To address the challenge of drug resistance and limited treatment options for recurrent gliomas with IDH1 mutations, a highly miniaturized screening of 2208 FDA-approved drugs is conducted using a high-throughput droplet microarray (DMA) platform. Two patient-derived temozolomide-resistant tumorspheres harboring endogenous IDH1 mutations (IDH1 ) are utilized. Screening identifies over 20 drugs, including verteporfin (VP), that significantly affected tumorsphere formation and viability. Proteomics analysis reveals that nuclear pore complex may be a potential VP target, suggesting a new mechanism of action independent of its known effects on YAP1. Knockdown experiments exclude YAP1 as a drug target in tumorspheres. Pathway analysis shows that NUP107 is a potential upstream regulator associated with VP response. Analysis of publicly available genomic datasets shows a significant correlation between high NUP107 expression and decreased survival in IDH1 astrocytoma, suggesting NUP107 may be a potential biomarker for VP response. This study demonstrates a miniaturized approach for cost-effective drug repurposing using 3D glioma models and identifies nuclear pore complex as a potential target for drug development. The findings provide preclinical evidence to support in vivo and clinical studies of VP and other identified compounds to treat IDH1 gliomas, which may ultimately improve clinical outcomes for patients with this challenging disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11469062PMC
http://dx.doi.org/10.1002/adhm.202300591DOI Listing

Publication Analysis

Top Keywords

fda-approved drugs
8
miniaturized screening
8
droplet microarray
8
idh1 mutations
8
nuclear pore
8
pore complex
8
complex potential
8
potential target
8
nup107 potential
8
idh1
6

Similar Publications

FDA-approved drugs featuring macrocycles or medium-sized rings.

Arch Pharm (Weinheim)

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China.

Macrocycles or medium-sized rings offer diverse functionality and stereochemical complexity in a well-organized ring structure, allowing them to fulfill various biochemical functions, resulting in high affinity and selectivity for protein targets, while preserving sufficient bioavailability to reach intracellular compartments. These features have made macrocycles attractive candidates in organic synthesis and drug discovery. Since the 20th century, more than three-score macrocyclic drugs, including radiopharmaceuticals, have been approved by the US Food and Drug Administration (FDA) for treating bacterial and viral infections, cancer, obesity, immunosuppression, inflammatory, and neurological disorders, managing cardiovascular diseases, diabetes, and more.

View Article and Find Full Text PDF

Caution when using network partners for target identification in drug discovery.

HGG Adv

January 2025

Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada; Department of Human Genetics, McGill University, Montréal, Québec, Canada; 5 Prime Sciences Inc, Montréal, Quebec, Canada; Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, QC, Canada; Department of Medicine, McGill University, Montréal, Québec, Canada; Department of Twin Research, King's College London, London, UK. Electronic address:

Identifying novel, high-yield drug targets is challenging and often results in a high failure rate. However, recent data indicates that leveraging human genetic evidence to identify and validate these targets significantly increases the likelihood of success in drug development. Two recent papers from Open Targets claimed that around half of FDA-approved drugs had targets with direct human genetic evidence.

View Article and Find Full Text PDF

The ongoing monkeypox (mpox) disease outbreak has spread to multiple countries in Central Africa and evidence indicates it is driven by a more virulent clade I monkeypox virus (MPXV) strain than the clade II strain associated with the 2022 global mpox outbreak, which led the WHO to declare this mpox outbreak a public health emergency of international concern. The FDA-approved small molecule antiviral tecovirimat (TPOXX) is recommended to treat mpox cases with severe symptoms, but the limited efficacy of TPOXX and the emergence of TPOXX resistant MPXV variants has challenged this medical practice of care and highlighted the urgent need for alternative therapeutic strategies. In this study we have used vaccinia virus (VACV) as a surrogate of MPXV to assess the antiviral efficacy of combination therapy of TPOXX together with mycophenolate mofetil (MMF), an FDA-approved immunosuppressive agent that we have shown to inhibit VACV and MPXV, or the N-myristoyltransferase (NMT) inhibitor IMP-1088.

View Article and Find Full Text PDF

Evolution of Alzheimer's Disease Therapeutics: From Conventional Drugs to Medicinal Plants, Immunotherapy, Microbiotherapy and Nanotherapy.

Pharmaceutics

January 2025

Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City 14269, Mexico.

Alzheimer's disease (AD) represents an escalating global health crisis, constituting the leading cause of dementia among the elderly and profoundly impairing their quality of life. Current FDA-approved drugs, such as rivastigmine, donepezil, galantamine, and memantine, offer only modest symptomatic relief and are frequently associated with significant adverse effects. Faced with this challenge and in line with advances in the understanding of the pathophysiology of this neurodegenerative condition, various innovative therapeutic strategies have been explored.

View Article and Find Full Text PDF

Multi-Omics and Network-Based Drug Repurposing for Septic Cardiomyopathy.

Pharmaceuticals (Basel)

January 2025

Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China.

Background/objectives: Septic cardiomyopathy (SCM) is a severe cardiac complication of sepsis, characterized by cardiac dysfunction with limited effective treatments. This study aimed to identify repurposable drugs for SCM by integrated multi-omics and network analyses.

Methods: We generated a mouse model of SCM induced by lipopolysaccharide (LPS) and then obtained comprehensive metabolic and genetic data from SCM mouse hearts using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and RNA sequencing (RNA-seq).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!