Background: CHEK2 c.1100delC was the first moderate-risk breast cancer (BC) susceptibility allele discovered. Despite several genomic, transcriptomic and functional studies, however, it is still unclear how exactly CHEK2 c.1100delC promotes tumorigenesis. Since the mutational landscape of a tumor reflects the processes that have operated on its development, the aim of this study was to uncover the somatic genomic landscape of CHEK2-associated BC.
Methods: We sequenced primary BC (pBC) and normal genomes of 20 CHEK2 c.1100delC mutation carriers as well as their pBC transcriptomes. Including pre-existing cohorts, we exhaustively compared CHEK2 pBC genomes to those from BRCA1/2 mutation carriers, those that displayed homologous recombination deficiency (HRD) and ER- and ER+ pBCs, totaling to 574 pBC genomes. Findings were validated in 517 metastatic BC genomes subdivided into the same subgroups. Transcriptome data from 168 ER+ pBCs were used to derive a TP53-mutant gene expression signature and perform cluster analysis with CHEK2 BC transcriptomes. Finally, clinical outcome of CHEK2 c.1100delC carriers was compared with BC patients displaying somatic TP53 mutations in two well-described retrospective cohorts totaling to 942 independent pBC cases.
Results: BC genomes from CHEK2 mutation carriers were most similar to ER+ BC genomes and least similar to those of BRCA1/2 mutation carriers in terms of tumor mutational burden as well as mutational signatures. Moreover, CHEK2 BC genomes did not show any evidence of HRD. Somatic TP53 mutation frequency and the size distribution of structural variants (SVs), however, were different compared to ER+ BC. Interestingly, BC genomes with bi-allelic CHEK2 inactivation lacked somatic TP53 mutations and transcriptomic analysis indicated a shared biology with TP53 mutant BC. Moreover, CHEK2 BC genomes had an increased frequency of > 1 Mb deletions, inversions and tandem duplications with peaks at specific sizes. The high chromothripsis frequency among CHEK2 BC genomes appeared, however, not associated with this unique SV size distribution profile.
Conclusions: CHEK2 BC genomes are most similar to ER+ BC genomes, but display unique features that may further unravel CHEK2-driven tumorigenesis. Increased insight into this mechanism could explain the shorter survival of CHEK2 mutation carriers that is likely driven by intrinsic tumor aggressiveness rather than endocrine resistance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10169359 | PMC |
http://dx.doi.org/10.1186/s13058-023-01653-0 | DOI Listing |
J Prev Alzheimers Dis
February 2025
Department of Psychosomatic Medicine, University Medicine Rostock, Rostock, Germany; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Greifswald, Rostock, Germany.
Background: Imaging studies showed early atrophy of the cholinergic basal forebrain in prodromal sporadic Alzheimer's disease and reduced posterior basal forebrain functional connectivity in amyloid positive individuals with subjective cognitive decline. Similar investigations in familial cases of Alzheimer's disease are still lacking.
Objectives: To test whether presenilin-1 E280A mutation carriers have reduced basal forebrain functional connectivity and whether this is linked to amyloid pathology.
Radiother Oncol
January 2025
School of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Radiation Unit, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel; GROW-School for Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands. Electronic address:
Unlabelled: Our previous study on BRCA breast cancer carriers disclosed a high local recurrence (LR) rate in patients who underwent skin sparing (SSM) or nipple sparing mastectomy (NSM) without postoperative radiation therapy (RT), compared to breast conservation surgery or mastectomy with RT. The current study compares the LR rates in BRCA versus non BRCA carriers after SSM/NSM in relation the receipt of RT.
Methods: The study was approved by the institutional ethics committee.
Lancet Neurol
February 2025
Department of Neurosciences, and Leuven Brain Institute, University of Leuven, Leuven, Belgium; Laboratory of Neurobiology, Center for Brain & Disease Research, VIB, Leuven, Belgium. Electronic address:
Autosomal dominant mutations in the gene encoding the DNA and RNA binding protein FUS are a cause of amyotrophic lateral sclerosis (ALS), and about 0·3-0·9% of patients with ALS are FUS mutation carriers. FUS-mutation-associated ALS (FUS-ALS) is characterised by early onset and rapid progression, compared with other forms of ALS. However, different pathogenic mutations in FUS can result in markedly different age at symptom onset and rate of disease progression.
View Article and Find Full Text PDFGynecol Endocrinol
December 2025
Department of Reproductive Medicine, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China.
Oocyte maturation arrest (OMA) may occur at different stages, including the germinal vesicle (GV), metaphase I (MI), and metaphase II (MII). A total maturation arrest of human oocytes is rarely observed during fertilization (IVF). We have identified a case of infertile female for whom all oocytes fail to mature and are arrested at MI.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Women's and Children's Health, University of Padova, 35128 Padova, Italy.
Fragile X syndrome (FXS) is a genetic neurodevelopmental disorder that causes a range of developmental problems including cognitive and behavioral impairment and learning disabilities. FXS is caused by full mutations (FM) of the gene expansions to over 200 repeats, with hypermethylation of the cytosine-guanine-guanine (CGG) tandem repeated region in its promoter, resulting in transcriptional silencing and loss of gene function. Female carriers of FM are typically less impaired than males.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!