A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The molecular mechanisms of recombinant chromosome 18 with parental pericentric inversions and a review of the literature. | LitMetric

The molecular mechanisms of recombinant chromosome 18 with parental pericentric inversions and a review of the literature.

J Hum Genet

Prenatal Diagnosis Center, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China.

Published: September 2023

Chromosomal rearrangements mostly result from non-allelic homologous recombination mediated by low-copy repeats (LCRs) or segmental duplications (SDs). Recent studies on recombinant chromosome 18 (rec (18)) have focused on diagnoses and clinical phenotypes. We diagnosed two cases of prenatal rec (18) and identified precise breakpoint intervals using karyotype and chromosomal microarray analyses. We analyzed the distribution characteristics of breakpoint repetitive elements to infer rearrangement mechanisms and reviewed relevant literature to identify genetic trends. Among the 12 families with 25 pregnancies analyzed, 68% rec (18), 24% spontaneous abortions, and 8% normal births were reported. In the 17 rec (18) cases, 65% presented maternal origin and 35% were paternal. Short-arm breakpoints at p11.31 were reported in 10 cases, whereas the long-arm breakpoints were located at q21.3 (6 cases) and q12 (4 cases). Breakpoints of pericentric inversions on chromosome 18 are concentrated in p11.31, q21.3, and q12 regions. Rearrangements at 18p11.31 are non-recurrent events. ALUs, LINE1s, and MIRs were enriched at the breakpoint regions (1.85 to 3.42-fold enrichment over the entire chromosome 18), while SDs and LCRs were absent. ALU subfamilies had sequence identities of 85.94% and 83.01% between two pair breakpoints. Small repetitive elements may mediate recombination-coupled DNA repair processes, facilitating rearrangements on chromosome 18. Maternal inversion carriers are more prone to abnormal recombination in prenatal families with rec (18). Recombinant chromosomes may present preferential segregation during gamete formation.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s10038-023-01157-xDOI Listing

Publication Analysis

Top Keywords

recombinant chromosome
8
pericentric inversions
8
repetitive elements
8
chromosome
5
rec
5
cases
5
molecular mechanisms
4
mechanisms recombinant
4
chromosome parental
4
parental pericentric
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!