Sodium-glucose cotransporter 2 (SGLT2) inhibitors lowers blood pressure (BP) and exert a salutary effect on the salt sensitivity of BP. This study aimed to examine the associations of SGLT2 genetic variants with salt sensitivity, longitudinal BP changes and the risk of incident hypertension in Baoji Salt-Sensitive Study. A total of 514 participants were recruited when the cohort was established in 2004, and 333 participants received a dietary intervention that consisted of a 3-day usual diet followed sequentially by a 7-day low-salt diet and a 7-day high-salt diet. The cohort was then followed up for 14 years to evaluate the longitudinal BP changes and development of hypertension. We found that SGLT2 SNP rs3813007 was significantly associated with the systolic BP (SBP) responses to the low-salt diet. Over the 14 years of follow-up, SNPs rs3116149 and rs3813008 were significantly associated with the longitudinal SBP changes, and SNPs rs3116149, rs3813008, rs3813007 in SGLT2 were significantly associated with incidence of hypertension. Furthermore, gene-based analyses revealed that SGLT2 was significantly associated with hypertension incidence. Our study suggests that SGLT2 genetic polymorphisms may be involved in salt sensitivity and development of hypertension.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41440-023-01301-2 | DOI Listing |
Nat Commun
December 2024
Beijing Frontier Research Center for Biological Structure, State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
Exceptionally diverse type V CRISPR-Cas systems provide numerous RNA-guided nucleases as powerful tools for DNA manipulation. Two known Cas12e nucleases, DpbCas12e and PlmCas12e, are both effective in genome editing. However, many differences exist in their in vitro dsDNA cleavage activities, reflecting the diversity in Cas12e's enzymatic properties.
View Article and Find Full Text PDFFood Chem
December 2024
Molecular Nutrition Branch, National Engineering Research Center of Rice and By-product Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China. Electronic address:
Although rice bran active peptide (RBAP) has potent antioxidant properties, its practical applications have been limited by its low bioavailability. In this study, we hypothesized that pH-responsive hydrogels prepared from the ionic gelation between chitosan and alginate could be a promising delivery system of short-chain peptides, like RBAP, for protecting them from chemical degradation during digestion and improving their functionality. The hydrogel beads retained RBAP in the gastric environment due to strong interactions between two biopolymers and RBAP, followed by a sustained release of more than 70 % peptide in the intestinal condition, thus improving its gastrointestinal stability.
View Article and Find Full Text PDFClin Exp Pharmacol Physiol
February 2025
Department of Nephropathy, Xi'an Central Hospital, Xi'an, China.
Myocardial dysfunction is a crucial determinant of the development of heart failure in salt-sensitive hypertension. Ferroptosis, a programmed iron-dependent cell death, has been increasingly recognised as an important contributor to the pathophysiology of various cardiovascular diseases. This study aims to investigate the role and underlying mechanism of ferroptosis in high-salt (HS)-induced myocardial damage.
View Article and Find Full Text PDFJ Biol Inorg Chem
December 2024
Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH, USA.
The outer mitochondrial membrane protein known as mitoNEET was discovered when it was labeled by a photoaffinity derivative of the anti-diabetes medication, pioglitazone. The biological role for mitoNEET and its specific mechanism for achieving this remains an active subject for research. There is accumulating evidence suggesting that mitoNEET could be a component of mitochondrial FeS cofactor biogenesis.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran.
Salinity and lead are two important abiotic stresses that limit crop growth and yield. In this study, we assayed the effect of these stresses on tolerant and sensitive maize genotypes. Four-week-old maize plants were treated with 250 mM sodium chloride (NaCl) and 250 µM lead (Pb).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!