A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An Improved Soft Subspace Clustering Algorithm Based on Particle Swarm Optimization for MR Image Segmentation. | LitMetric

Soft subspace clustering (SSC), which analyzes high-dimensional data and applies various weights to each cluster class to assess the membership degree of each cluster to the space, has shown promising results in recent years. This method of clustering assigns distinct weights to each cluster class. By introducing spatial information, enhanced SSC algorithms improve the degree to which intraclass compactness and interclass separation are achieved. However, these algorithms are sensitive to noisy data and have a tendency to fall into local optima. In addition, the segmentation accuracy is poor because of the influence of noisy data. In this study, an SSC approach that is based on particle swarm optimization is suggested with the intention of reducing the interference caused by noisy data. The particle swarm optimization method is used to locate the best possible clustering center. Second, increasing the amount of geographical membership makes it possible to utilize the spatial information to quantify the link between different clusters in a more precise manner. In conclusion, the extended noise clustering method is implemented in order to maximize the weight. Additionally, the constraint condition of the weight is changed from the equality constraint to the boundary constraint in order to reduce the impact of noise. The methodology presented in this research works to reduce the amount of sensitivity the SSC algorithm has to noisy data. It is possible to demonstrate the efficacy of this algorithm by using photos with noise already present or by introducing noise to existing photographs. The revised SSC approach based on particle swarm optimization (PSO) is demonstrated to have superior segmentation accuracy through a number of trials; as a result, this work gives a novel method for the segmentation of noisy images.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12539-023-00570-2DOI Listing

Publication Analysis

Top Keywords

particle swarm
16
swarm optimization
16
noisy data
16
based particle
12
soft subspace
8
subspace clustering
8
weights cluster
8
cluster class
8
segmentation accuracy
8
ssc approach
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!