Cancer is an unimpeded growth of cells leading to metathesis of cancer and eventually spread throughout the body. PIM kinases are the members of the serine threonine kinase playing role in cancer progression, differentiation and proliferation. Till date there is no single drug targeting PIM-1 kinase in the market, that has made itself a target in limelight for the discover of new anticancer agents. The contemporary research focusses on the development of new inhibitors of PIM-1 kinase by application of ligand-based and structure-based perspective of drug discovery namely 3D-QSAR, molecular docking and dynamics. The following study stated the correlation amid structural and biological activity of the compounds employing 3D-QSAR analysis. Three 3D-QSAR models were generated using 33 molecules from which the excellent model stated an encouraging conventional correlation coefficient () , cross validation coefficient (q) . Furthermore, the predicted correlation coefficient (r ) respectively. Molecular docking studies revealed that the most active compound resided in the active pocket of PIM-1 kinase establishing hydrogen bond interactions with Asp186 in the DFG motif; similarly, all other molecules were engaged within the active site of the PIM-1 kinase. Moreover, molecular dynamics simulation study stated the stability of the ligand in the active site of PIM-1 kinase protein by developing two hydrogen bonds throughout the trajectory of 100 ns. In nutshell, the output stated the successful application of ligand and structure-based strategy for the development of novel PIM-1 kinase inhibitors as anticancer agents.Communicated by Ramaswamy H. Sarma.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2023.2204502DOI Listing

Publication Analysis

Top Keywords

pim-1 kinase
24
molecular docking
12
anticancer agents
8
molecular dynamics
8
study stated
8
correlation coefficient
8
active site
8
site pim-1
8
kinase
7
pim-1
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!