Botrytis cinerea is a non-host-specific phytopathogenic fungus capable of infecting numerous cash crops. Here, we analyzed the functions of the Bcb1 gene in B. cinerea, which encodes a membrane protein belonging to the acyl-coenzyme A synthase family. Compared to the wild type, Bcb1-deletion mutants exhibited obvious morphological abnormalities, including slower vegetative growth and reduced melanin production. The absence of Bcb1 causes B. cinerea to form only small and incompletely developed infection cushions and fail to produce spores. The Bcb1 mutants displayed hypersensitivity to the membrane stressor SDS, the cell wall stressor Congo red, and the oxidative stressor HO and increased resistance to intracellular osmotic stress caused by KCl compared to the wild-type strain. However, there were no differences in tolerance to extracellular osmotic stress caused by NaCl. The deletion of Bcb1 also caused a reduction in pathogenicity. The qRT‒PCR results showed that the genes Bcpks12 and Bcpks13, which are related to melanin biosynthesis, and Bcpg2, BcBOT2, and cutA, which are related to virulence, were downregulated in ∆Bcb1. These data suggest that BCB1 is important for conidial morphogenesis, and pathogenesis in B. cinerea.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00203-023-03540-w | DOI Listing |
Hortic Res
January 2025
Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China.
Sugars act as signaling molecules to modulate various growth processes and enhance plant tolerance to various abiotic and biotic stresses. Moreover, sugars contribute to the postharvest flavor in fleshy fruit crops. To date, the regulation of sugar metabolism and its effect in plant growth, fruit ripening, postharvest quality, and stress resistance remains not fully understood.
View Article and Find Full Text PDFJ Colloid Interface Sci
April 2025
State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China. Electronic address:
Conventional light-driven antimicrobial strategies of zinc oxide (ZnO) are limited by inadequate illumination in dark environments. In this study, carboxylated cellulose nanocrystals (MCNC) mediated flower-like ZnO (C@Z) with self-promoted reactive oxygen species release under dark is fabricated. The adsorption of Zn ions on MCNC prompts the growth of ZnO along the (002) crystal plane, forming a flower-like hybrid with superior dispersibility and oxygen vacancies compared to MCNC-free ZnO, which exposes the (100) plane.
View Article and Find Full Text PDFMicroorganisms
January 2025
Department of Food Science and Technologies for Sustainable Agro-Food Chain (DiSTAS), Università Cattolica del Sacro Cuore, 29122 Piacenza, PC, Italy.
This study investigated whether viable cells, dead cells or cell-free supernatants (CFS) were responsible for the biocontrol effect of strains from two important bacterial genera, and , known for their antifungal properties against plant pathogens and food spoilage microorganisms. Specifically, the capability of these strains to produce extracellular hydrolytic enzymes on specified media was assessed, along with their effectiveness in inhibiting the mycelial growth of several phytopathogenic fungi (, , and ) using dual culture plate assays. Results from these inhibition assays revealed that PF05 and LMG 23520 strains were the most effective in suppressing fungal growth, especially .
View Article and Find Full Text PDFGenes (Basel)
December 2024
Liaoning Institute of Economic Forestry, Dalian 116031, China.
Background: Hazelnut (), a significant woody oil tree species in economic forests, faces production constraints due to biotic stresses, with Hazelnut Husk Brown Rot, caused by the pathogenic necrotrophic fungus (), being the most severe. To date, limited information is available regarding the resistance of hazelnuts to . To better understand the mechanisms of resistance to .
View Article and Find Full Text PDFTrends Plant Sci
January 2025
Biointeractions and Plant Health, Wageningen University and Research, 6708PB Wageningen, The Netherlands. Electronic address:
Botrytis cinerea is an important generalist fungal plant pathogen that causes great economic losses. Conventional detection methods to identify B. cinerea infections rely on visual assessments, which are error prone, subjective, labor intensive, hard to quantify, and unsuitable for artificial intelligence (AI) and machine learning (ML) applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!