Molecular mimicry between foreign and self-antigens has been implicated as a cause of autoimmune hepatitis in experimental models and cross-reacting antibodies in patients. This review describes the experimental and clinical evidence for molecular mimicry as a cause of autoimmune hepatitis, indicates the limitations and uncertainties of this premise, and encourages investigations that assess diverse environmental antigens as sources of disease-relevant molecular mimics. Pertinent articles were identified in PubMed using multiple search phrases. Several pathogens have linear or conformational epitopes that mimic the self-antigens of autoimmune hepatitis. The occurrence of an acute immune-mediated hepatitis after vaccination for severe acute respiratory syndrome (SARS)-associated coronavirus 2 (SARS-CoV-2) has suggested that vaccine-induced peptides may mimic disease-relevant tissue antigens. The intestinal microbiome is an under-evaluated source of gut-derived antigens that could also engage in molecular mimicry. Chaperone molecules may enhance the pathogenicity of molecular mimics, and they warrant investigation. Molecular mimics of immune dominant epitopes within cytochrome P450 IID6, the autoantigen most closely associated with autoimmune hepatitis, should be sought in diverse environmental antigens and assessed for pathogenicity. Avoidance strategies, dietary adjustments, vaccine improvement, and targeted manipulation of the intestinal microbiota may emerge as therapeutic possibilities. In conclusion, molecular mimicry may be a missing causality of autoimmune hepatitis. Molecular mimics of key immune dominant epitopes of disease-specific antigens must be sought in diverse environmental antigens. The ubiquity of molecular mimicry compels rigorous assessments of peptide mimics for immunogenicity and pathogenicity in experimental models. Molecular mimicry may complement epigenetic modifications as causative mechanisms of autoimmune hepatitis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10169207 | PMC |
http://dx.doi.org/10.1007/s10620-023-07967-5 | DOI Listing |
J Immunol Methods
January 2025
Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, St. Petersburg 194064, Russia; Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 15/17 Ulitsa Prof. Popova, St. Petersburg 197376, Russia; Institute of Experimental Medicine, 12 Ulitsa Akademika Pavlova, St. Petersburg 197376, Russia.
Background: Rapid vaccine platforms development is crucial for responding to epidemics and pandemics of emerging infectious diseases, such as Ebola. This study explores the potential of peptide vaccines that self-organize into amyloid-like fibrils, aiming to enhance immunogenicity while considering safety and cross-reactivity.
Methods: We synthesized two peptides, G33 and G31, corresponding to a segment of the Ebola virus GP2 protein, with G33 known to form amyloid-like fibrils.
Gut
January 2025
State Key Laboratory of Oncology in South China and Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
Background: The resistance of pancreatic ductal adenocarcinoma (PDAC) to trametinib therapy limits its clinical use. However, the molecular mechanisms underlying trametinib resistance in PDAC remain unclear.
Objective: We aimed to illustrate the mechanisms of resistance to trametinib in PDAC and identify trametinib resistance-associated druggable targets, thus improving the treatment efficacy of trametinib-resistant PDAC.
Immunity
January 2025
Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, Australia. Electronic address:
The unexplained association between infection and autoimmune disease is strongest for hepatitis C virus-induced cryoglobulinemic vasculitis (HCV-cryovas). To analyze its origins, we traced the evolution of pathogenic rheumatoid factor (RF) autoantibodies in four HCV-cryovas patients by deep single-cell multi-omic analysis, revealing three sources of B cell somatic mutation converged to drive the accumulation of a large disease-causing clone. A method for quantifying low-affinity binding revealed recurring antibody variable domain combinations created by V(D)J recombination that bound self-immunoglobulin G (IgG) but not viral E2 antigen.
View Article and Find Full Text PDFActa Pharm Sin B
December 2024
Department of Ophthalmology, the First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China.
Uveal melanoma (UM) poses a significant lethality, with approximately 50% of those developing metastases surviving less than one year. In the progression of UM, vasculogenic mimicry (VM) induced by hypoxia plays a pivotal role, which also partially explains the resistance of UM to anti-angiogenic therapies. Nevertheless, the crucial molecular mechanisms underlying VM in the progression of UM remain unclear.
View Article and Find Full Text PDFEMBO J
January 2025
Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA.
Mitochondrial metabolism requires the chaperoned import of disulfide-stabilized proteins via CHCHD4/MIA40 and its enigmatic interaction with oxidoreductase Apoptosis-inducing factor (AIF). By crystallizing human CHCHD4's AIF-interaction domain with an activated AIF dimer, we uncover how NADH allosterically configures AIF to anchor CHCHD4's β-hairpin and histidine-helix motifs to the inner mitochondrial membrane. The structure further reveals a similarity between the AIF-interaction domain and recognition sequences of CHCHD4 substrates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!