Background: Recurrence of common bile duct stones (CBDs) commonly happens after endoscopic retrograde cholangiopancreatography (ERCP). The clinical prediction models for the recurrence of CBDs after ERCP are lacking.
Aims: We aim to develop high-performance prediction models for the recurrence of CBDS after ERCP treatment using automated machine learning (AutoML) and to assess the AutoML models versus the traditional regression models.
Methods: 473 patients with CBDs undergoing ERCP were recruited in the single-center retrospective cohort study. Samples were divided into Training Set (65%) and Validation Set (35%) randomly. Three modeling approaches, including fully automated machine learning (Fully automated), semi-automated machine learning (Semi-automated), and traditional regression were applied to fit prediction models. Models' discrimination, calibration, and clinical benefits were examined. The Shapley additive explanations (SHAP), partial dependence plot (PDP), and SHAP local explanation (SHAPLE) were proposed for the interpretation of the best model.
Results: The area under roc curve (AUROC) of semi-automated gradient boost machine (GBM) model was 0.749 in Validation Set, better than the other fully/semi-automated models and the traditional regression models (highest AUROC = 0.736). The calibration and clinical application of AutoML models were adequate. Through the SHAP-PDP-SHAPLE pipeline, the roles of key variables of the semi-automated GBM model were visualized. Lastly, the best model was deployed online for clinical practitioners.
Conclusion: The GBM model based on semi-AutoML is an optimal model to predict the recurrence of CBDs after ERCP treatment. In comparison with traditional regressions, AutoML algorithms present significant strengths in modeling, which show promise in future clinical practices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10620-023-07949-7 | DOI Listing |
Am J Emerg Med
January 2025
Department of Emergency Medicine, Yale University School of Medicine, New Haven, CT, USA; Center for Outcomes Research and Evaluation, Yale University, New Haven, CT, USA.
Background: This study aimed to examine how physician performance metrics are affected by the speed of other attendings (co-attendings) concurrently staffing the ED.
Methods: A retrospective study was conducted using patient data from two EDs between January-2018 and February-2020. Machine learning was used to predict patient length of stay (LOS) conditional on being assigned a physician of average speed, using patient- and departmental-level variables.
JMIR Med Inform
January 2025
Department of Science and Education, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, China.
Background: Large language models (LLMs) have been proposed as valuable tools in medical education and practice. The Chinese National Nursing Licensing Examination (CNNLE) presents unique challenges for LLMs due to its requirement for both deep domain-specific nursing knowledge and the ability to make complex clinical decisions, which differentiates it from more general medical examinations. However, their potential application in the CNNLE remains unexplored.
View Article and Find Full Text PDFJMIR AI
January 2025
Department of Radiology, Children's National Hospital, Washington, DC, United States.
J Chem Theory Comput
January 2025
Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550025, P. R. China.
Traditional machine learning methods face significant challenges in predicting the properties of highly symmetric molecules. In this study, we developed a machine learning model based on graph neural networks (GNNs) to accurately and swiftly predict the thermodynamic and photochemical properties of fullerenols, such as C(OH) ( = 1 to 30). First, we established a global method for generating fullerenol isomers through isomer fingerprinting, which can generate all possible isomers or produce diverse structural types on demand.
View Article and Find Full Text PDFPLoS One
January 2025
Dirección General de Minería, República Dominicana.
This study investigates the geochemical characteristics of rare earth elements (REEs) in highland karstic bauxite deposits located in the Sierra de Bahoruco, Pedernales Province, Dominican Republic. These deposits, formed through intense weathering of volcanic material, represent a potentially valuable REE resource for the nation. Surface and subsurface soil samples were analyzed using portable X-ray fluorescence (pXRF) and a NixPro 2 color sensor validated with inductively coupled plasma optical emission spectrometry (ICP-OES).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!