Objectives: The aim of this study was to assess the size of the corpus callosum in members of Mensa International, which is the world's largest and oldest high-intelligence quotient (IQ) society.

Methods: We performed T2-weighted magnetic resonance imaging (Repetition Time, TR = 3200 ms, Time of Echo, TE = 409 ms) to examine the brain of members of Mensa International (Polish national group) in order to assess the size of the corpus callosum. Results from 113 male MENSA members and 96 controls in the age range of 21-40 years were analyzed.

Results: The comparative analysis showed that the mean length of the corpus callosum and the thickness of the isthmus were significantly greater in the Mensa members compared to the control groups. A statistically significant difference was also identified in the largest linear dimension of the brain from the frontal lobe to the occipital lobe. The mean corpus callosum cross-sectional area and its ratio to the brain area were significantly greater in the Mensa members.

Conclusions: The results show that the dimensions (linear measures and midsagittal cross-sectional surface area) of the corpus callosum were significantly greater in the group of Mensa members than in the controls.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10689507PMC
http://dx.doi.org/10.1007/s00117-023-01146-3DOI Listing

Publication Analysis

Top Keywords

corpus callosum
24
members mensa
12
mensa international
12
mensa members
12
assess size
8
size corpus
8
greater mensa
8
mensa
7
callosum
6
members
6

Similar Publications

The cytoskeleton, composed of microtubules, intermediate filaments and actin filaments is vital for various cellular functions, particularly within the nervous system, where microtubules play a key role in intracellular transport, cell morphology, and synaptic plasticity. Tubulin-specific chaperones, including tubulin folding cofactors (TBCA, TBCB, TBCC, TBCD, TBCE), assist in the proper formation of α/β-tubulin heterodimers, essential for microtubule stability. Pathogenic variants in these chaperone-encoding genes, especially TBCD, have been linked to Progressive Encephalopathy with Brain Atrophy and Thin Corpus Callosum (PEBAT, OMIM #604,649), a severe neurodevelopmental disorder.

View Article and Find Full Text PDF

Clinical Diagnosis and Differential Diagnosis Between CSF1R- and AARS2-Related Leukoencephalopathy.

J Mol Neurosci

January 2025

Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science/Peking Union Medical College, Beijing, 100730, China.

CSF1R-related leukoencephalopathy (CSF1R-L) and AARS2-related leukoencephalopathy (AARS2-L) were two disease entities sharing similar phenotype and even pathological changes. Although clinically, radiologically, and pathologically similar, they were caused by mutation of two different genes. As the rarity of the two diseases, the differential diagnosis of them was difficult.

View Article and Find Full Text PDF

Background: The spontaneous fluctuations in functional magnetic resonance imaging (fMRI) signals of the brain's gray matter (GM) have been interpreted as representations of neural activity variations. In previous research, white matter (WM) signals, often considered noise, have also been demonstrated to reflect characteristics of functional activity and interactions among different brain regions. Recently, functional gradients have gained significant attention due to their success in characterizing the functional organization of the whole brain.

View Article and Find Full Text PDF

The integrity of the frontal segment of the corpus callosum, forceps minor, is particularly susceptible to age-related degradation and has been associated with cognitive outcomes in both healthy and pathological ageing. The predictive relevance of forceps minor integrity in relation to cognitive outcomes following a stroke remains unexplored. Our goal was to evaluate whether the heterogeneity of forceps minor integrity, assessed early after stroke onset (2-6 weeks), contributes to explaining variance in longitudinal outcomes in post-stroke aphasia.

View Article and Find Full Text PDF

The corpus callosum, a major white matter region central to cognitive function, is vulnerable to aging. Using zeitgeber time (ZT) aligned with environmental light/dark cycles, we investigated temporal gene expression patterns in the corpus callosum of young (5-month-old) and aged (24-month-old) mice using RNA-seq. Comparative analysis revealed more differentially expressed genes across ZT pairs in young mice than aged mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!