Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10171785PMC
http://dx.doi.org/10.1016/j.cub.2023.04.030DOI Listing

Publication Analysis

Top Keywords

reconstitution microtubule
4
microtubule nucleation
4
nucleation in vitro
4
in vitro reveals
4
reveals novel
4
novel roles
4
roles mzt1
4
reconstitution
1
nucleation
1
in vitro
1

Similar Publications

The motility of biological molecular motors has typically been analyzed by in vitro reconstitution systems using motors isolated and purified from organs or expressed in cultured cells. The behavior of biomolecular motors within cells has frequently been reported to be inconsistent with that observed in reconstituted systems in vitro. Although this discrepancy has been attributed to differences in ionic strength and intracellular crowding, understanding how such parameters affect the motility of motors remains challenging.

View Article and Find Full Text PDF

KIF1C activates and extends dynein movement through the FHF cargo adapter.

Nat Struct Mol Biol

January 2025

Centre for Mechanochemical Cell Biology and Warwick Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK.

Cellular cargos move bidirectionally on microtubules by recruiting opposite polarity motors dynein and kinesin. These motors show codependence, where one requires the activity of the other, although the mechanism is unknown. Here we show that kinesin-3 KIF1C acts as both an activator and a processivity factor for dynein, using in vitro reconstitutions of human proteins.

View Article and Find Full Text PDF

The motile parameters of kinesin superfamily proteins are fundamental to intracellular transport. Single-molecule motility assays using total internal reflection fluorescence (TIRF) microscopy are a gold standard technique for measuring the motile parameters of kinesin motors. With this technique, one can evaluate the velocity, run length, and binding frequency of kinesins on microtubules by directly observing their motility.

View Article and Find Full Text PDF

The tubulin code hypothesis predicts that tubulin tails create programs for selective regulation of microtubule-binding proteins, including kinesin motors. However, the molecular mechanisms that determine selective regulation and their relevance in cells are poorly understood. We report selective regulation of budding yeast kinesin-5 motors by the β-tubulin tail.

View Article and Find Full Text PDF

During cell division, NuMA orchestrates the focusing of microtubule minus-ends in spindle poles and cortical force generation on astral microtubules by interacting with dynein motors, microtubules, and other cellular factors. Here we used in vitro reconstitution, cryo-electron microscopy, and live cell imaging to understand the mechanism and regulation of NuMA. We determined the structure of the processive dynein/dynactin/NuMA complex (DDN) and showed that the NuMA N-terminus drives dynein motility in vitro and facilitates dynein-mediated transport in live cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!