Dengue virus (DENV) infection is one of the most emerging arboviral infections in humans. DENV is a positive-stranded RNA virus in the Flaviviridae family consisting of an 11 kb genome. DENV non-structural protein 5 (DENV-NS5) constitutes the largest among the non-structural proteins, which act as two domains, the RNA-dependent RNA polymerase (RdRp) and RNA methyltransferase enzyme (MTase). The DENV-NS5 RdRp domain contributes to the viral replication stages, whereas the MTase initiates viral RNA capping and facilitates polyprotein translation. Given the functions of both DENV-NS5 domains have made them an important druggable target. Possible therapeutic interventions and drug discoveries against DENV infection were thoroughly reviewed; however, a current update on the therapeutic strategies specific to DENV-NS5 or its active domains was not attempted. Since most potential compounds and drugs targeting the DENV-NS5 were evaluated in both in vitro cultures and animal models, a more detailed evaluation of molecules/drug candidates still requires investigation in randomized controlled clinical trials. This review summarizes current perspectives on the therapeutic strategies adopted to target the DENV-NS5 (RdRp and MTase domains) at the host-pathogen interface and further discusses the directions to identify candidate drugs to combat DENV infection.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2023.115416DOI Listing

Publication Analysis

Top Keywords

denv infection
12
rna-dependent rna
8
rna polymerase
8
polymerase rdrp
8
mtase domains
8
dengue virus
8
non-structural protein
8
protein denv-ns5
8
denv-ns5 rdrp
8
therapeutic strategies
8

Similar Publications

Comparison of clinical and virological features in pediatric and adult dengue cases at Insein General Hospital during Myanmar's 2022 dengue season.

Trop Med Health

January 2025

Department of Medical Research, Ministry of Health, No.5, Ziwaka Road, Dagon Township, Yangon, 11191, Myanmar.

Background: Myanmar is one of the countries in Southeast Asia where serious dengue outbreaks occur and Yangon is among the regions with the highest number of cases in the country. Many infections including dengue are common in Yangon during the rainy season, and co-infections may also occur. Adults are more likely than children to experience co-infections of dengue and other diseases.

View Article and Find Full Text PDF

Dengue, caused by the dengue virus (DENV), poses a significant global health challenge. Effective vaccines and treatments for dengue are lacking due to gaps in understanding its pathogenesis and mechanisms in severe cases. This study investigates the role of immunoglobulin E (IgE) in dengue, focusing on its potential association with virus neutralization and antibody-dependent enhancement (ADE) in DENV replication.

View Article and Find Full Text PDF

Examining the co-circulation of various serotypes and finding serotypes linked to illness severity were the main objectives of this study, which sought to investigate the epidemiology and serotype distribution of dengue in Haryana, North India. The cross-sectional study, which was carried out in a tertiary care hospital between September 2021 and April 2023, enrolled participants who met WHO criteria for probable dengue fever. Blood samples underwent molecular and serological diagnostics, such as immunochromatographic testing, VIDAS® Dengue NS1 assays, and TRUPCR® Dengue Detection and serotyping kits, in addition to the collection of clinical and demographic data.

View Article and Find Full Text PDF

Background: Dengue fever (DF) poses a growing global threat, necessitating a comprehensive one-health approach to address its complex interplay between human, animal, and environmental factors. In Oyo State, Nigeria, the true burden of DF remains unknown due to underdiagnosis and misdiagnosis as malaria, exacerbated by poor health-seeking behavior, weak surveillance systems, and inadequate health infrastructure. Adopting a one-health approach is crucial to understanding the dynamics of DF transmission.

View Article and Find Full Text PDF

Dengue Virus Replicative-Form dsRNA Is Recognized by Both RIG-I and MDA5 to Activate Innate Immunity.

J Med Virol

February 2025

CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China.

RIG-I like receptors (RLRs) are a family of cytosolic RNA sensors that sense RNA virus infection to activate innate immune response. It is generally believed that different RNA viruses are recognized by either RIG-I or MDA5, two important RLR members, depending on the nature of pathogen-associated molecular patterns (PAMPs) that are generated by RNA virus replication. Dengue virus (DENV) is an important RNA virus causing serious human diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!