Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ultrafast molecular dynamics are frequently extracted from two-dimensional (2D) spectra via the center line slope (CLS) method. The CLS method depends on the accurate determination of frequencies where the 2D signal is at a maximum, and multiple approaches exist for the determination of that maximum. Various versions of peak fitting for CLS analyses have been utilized; however, the impact of peak fitting on the accuracy and precision of the CLS method has not been reported in detail. Here, we evaluate several versions of CLS analyses using both simulated and experimental 2D spectra. The CLS method was found to be significantly more robust when fits were used to extract the maxima, particularly fitting methods that utilize pairs of opposite-sign peaks. However, we also observed that pairs of opposite-signed peaks required more assumptions than single peaks, which are important to check when interpreting experimental spectra using peak pairs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10201534 | PMC |
http://dx.doi.org/10.1021/acs.jpcb.2c07565 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!