Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Visual processing in the retina depends on the collective activity of large ensembles of neurons organized in different layers. Current techniques for measuring activity of layer-specific neural ensembles rely on expensive pulsed infrared lasers to drive 2-photon activation of calcium-dependent fluorescent reporters. We present a 1-photon light-sheet imaging system that can measure the activity in hundreds of neurons in the retina over a large field of view while presenting visual stimuli. This allows for a reliable functional classification of different retinal cell types. We also demonstrate that the system has sufficient resolution to image calcium entry at individual synaptic release sites across the axon terminals of dozens of simultaneously imaged bipolar cells. The simple design, large field of view, and fast image acquisition make this a powerful system for high-throughput and high-resolution measurements of retinal processing at a fraction of the cost of alternative approaches.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10163030 | PMC |
http://dx.doi.org/10.1016/j.crmeth.2023.100453 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!