Crystallization abounds in nature and industrial practice. A plethora of indispensable products ranging from agrochemicals and pharmaceuticals to battery materials are produced in crystalline form in industrial practice. Yet, our control over the crystallization process across scales, from molecular to macroscopic, is far from complete. This bottleneck not only hinders our ability to engineer the properties of crystalline products essential for maintaining our quality of life but also hampers progress toward a sustainable circular economy in resource recovery. In recent years, approaches leveraging light fields have emerged as promising alternatives to manipulate crystallization. In this review article, we classify laser-induced crystallization approaches where light-material interactions are utilized to influence crystallization phenomena according to proposed underlying mechanisms and experimental setups. We discuss nonphotochemical laser-induced nucleation, high-intensity laser-induced nucleation, laser trapping-induced crystallization, and indirect methods in detail. Throughout the review, we highlight connections among these separately evolving subfields to encourage the interdisciplinary exchange of ideas.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10161235PMC
http://dx.doi.org/10.1021/acs.cgd.2c01526DOI Listing

Publication Analysis

Top Keywords

laser-induced crystallization
8
industrial practice
8
laser-induced nucleation
8
crystallization
7
review laser-induced
4
crystallization solution
4
solution crystallization
4
crystallization abounds
4
abounds nature
4
nature industrial
4

Similar Publications

Chalcogenides are the most important infrared nonlinear optical (NLO) material candidates, and the exploration of high-performance ones is attractive and challengeable. Hitherto, there is no NLO scandium (Sc) chalcogenides experimentally studied. Here, new quaternary Sc thiophosphate CsScPS (CSPS) was synthesized by the facile metal oxide-boron-sulfur/reactive flux hybrid solid-state method.

View Article and Find Full Text PDF

Unconventional aspects in metal-embedded laser-induced graphene.

Chem Sci

December 2024

Department of Chemistry & Biochemistry, Department of Materials Science & Engineering, California NanoSystems Institute, University of California, Los Angeles Los Angeles CA 90095 USA

Laser-induced graphene (LIG) has gained significant attention, with over 170 publications in 2023 alone. This surge in popularity is due to the unique advantages LIG offers over traditional thermal methods, such as fast, solvent-free, scalable production and its ability to scribe intricate patterns on various substrates, including heat-sensitive materials like plastics. In recent developments, metal-embedded LIG (M-LIG) has expanded the potential applications of LIG, particularly in energy storage, microelectronics, and sensing.

View Article and Find Full Text PDF

Background: Ceramic endosseous implant coatings have gained esteem due to their favorable osteoinductive and osteoconductive properties. However, such a layer may be prone to failure under in vivo conditions, which necessitates its modification.

Objectives: The aim of the present study was to modify an electrodeposited hydroxyapatite (HA) coating on titanium (Ti) with ultrashort-pulsed lasers for the incorporation of the ceramic into the sample surface and the texturing of the metal surface.

View Article and Find Full Text PDF

Laser-Induced Crystallization of Amino Acids through the Coordinated Effect of Optical Forces and Marangoni Convection.

J Phys Chem A

December 2024

State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Haidian, Beijing 100084, China.

Laser-induced crystallization through optical trapping offers precise and spatiotemporal control of crystallization kinetics at the microscale region. Here, we demonstrate the optical trapping-induced crystallization of various amino acids, including glycine, l-cysteine, and l-alanine, by focusing a 532 nm continuous-wave laser in amino acid/HO solution. The coordinated effect of optical forces and heat-driven molecular delivery improves the local molecular concentration, leading to nucleation and subsequent crystal growth.

View Article and Find Full Text PDF
Article Synopsis
  • The text discusses advancements in light-driven 3D additive manufacturing, focusing on the photothermal laser-printing of sub-micrometer ZnO structures for microelectronics.
  • It highlights three key improvements: using single-crystalline ZnO for better structure, utilizing dimethyl sulfoxide (DMSO) to achieve higher temperatures, and employing specialized substrates for improved light to heat conversion.
  • The process is noted for its efficiency since it requires no post-processing and can be conducted without a cleanroom environment, simplifying the fabrication of crystalline semiconductors.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!