In this work, π-conjugated block copolymers consisting of poly(phenyl isocyanide) (PPI) and polyfluorene (PF) segments are facilely prepared by one-pot sequential polymerization of phenyl isocyanide (monomer 1) and 7-bromo-9,9-dioctylfluorene-2-boronic acid pinacol ester (monomer 2). The Pd(II)-terminated PPI is first prepared via polymerizing monomer 1 catalyzed with phenyl alkyne-Pd(II) complex and then utilized to initiate the controlled Suzuki cross-coupling polymerization of monomer 2, yielding various PPI-b-PF copolymers possessing controlled molar mass and narrow dispersity. Owing to the helical conformation of PPI segment and π-conjugated structure of PF segment, PPI-b-PF copolymers present distinctive optical property and fascinating chiral self-assembly behavior. During the self-assembly process, chirality transfer from helical PPI block to the supramolecular aggregates of helical nanofibers occurs to afford optically active helical nanofibers with high optical activity. Furthermore, the self-assembled helical nanofibers exhibit excellent circularly polarized luminescence performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/marc.202300159 | DOI Listing |
Langmuir
January 2025
National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China.
Bacteria have the potential to exhibit divergent stereochemical preferences for different levels of chiral structures, including from molecule, supramolecule, to nanomicroscale helical structure. Accordingly, the structure-activity relationship between chirality and bactericidal activity remains uncertain. In this study, we seek to understand the multivalent molecular chirality effect of chiral supramolecular polymers on antibacterial activity.
View Article and Find Full Text PDFNano Lett
January 2025
Zhejiang Engineering Research Center for Tissue Repair Materials and Wenzhou Key Laboratory of Biomaterials and Engineering and Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China.
Saccharides and peptides with markedly disparate stereochemical features serve as pivotal chiral molecular partners in living systems. The importance of glycosylation in influencing glycopeptide self-assembly has been recognized. However, how different chiral combinations of saccharides and peptides influence the macroscopic hydrogel mechanics, fiber nanomechanics, asymmetric molecular packing, and thermodynamic changes during glycopeptide self-assembly remains unknown.
View Article and Find Full Text PDFSmall
January 2025
Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, The Gateway, Leicester, LE1 9BH, UK.
Guiding molecular assembly of peptides into rationally engineered nanostructures remains a major hurdle against the development of functional peptide-based nanomaterials. Various non-covalent interactions come into play to drive the formation and stabilization of these assemblies, of which electrostatic interactions are key. Here, the atomistic mechanisms by which electrostatic interactions contribute toward controlling self-assembly and lateral association of ultrashort β-sheet forming peptides are deciphered.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200230, P. R. China.
Chirality evolution is ubiquitous and important in nature, but achieving it in artificial systems is still challenging. Herein, the chirality evolution of supramolecular helices based on l-phenylalanine derivative (LPF) and naphthylamide derivate (NDIAPY) is achieved by the strategy of electron transfer (ET) assisted secondary nucleation. ET from LPF to NDIAPY can be triggered by 5 s UV irradiation on left-handed LPF-NDIAPY co-assemblies, leading to NDIAPY radical anions and partial disassembly of the helices.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
Mucosal immune responses to vaccination are essential for achieving full protection against pathogens entering their host at mucosal sites. However, traditional parenteral immunization routes commonly fail to raise significant mucosal immunity. Sublingual immunization is a promising alternative delivery route to raise robust immune responses both systemically and at mucosal sites, and nanomaterial-based subunit vaccine platforms offer opportunities for raising epitope-specific responses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!