AI Article Synopsis

  • Gaucher disease (GD) is a genetic disorder caused by mutations in the GBA gene that affects macrophage function.
  • CRISPR gene editing was used to correct the GBA mutation in stem cells, producing cell lines with different genetic variations (homozygous and heterozygous).
  • The corrected macrophages demonstrated improved functions, indicating that GD mutations impact their ability to fight infections, and research suggests that having GD may offer some protection against tuberculosis.

Article Abstract

Gaucher disease (GD) is an autosomal recessive lysosomal storage disorder caused by mutations in the β-glucocerebrosidase (GCase) GBA gene, which result in macrophage dysfunction. CRISPR (clustered regularly interspaced short palindromic repeats) editing of the homozygous L444P (1448T→C) GBA mutation in type 2 GD (GBA-/-) human-induced pluripotent stem cells (hiPSCs) yielded both heterozygous (GBA+/-) and homozygous (GBA+/+) isogenic lines. Macrophages derived from GBA-/-, GBA+/- and GBA+/+ hiPSCs showed that GBA mutation correction restores normal macrophage functions: GCase activity, motility, and phagocytosis. Furthermore, infection of GBA-/-, GBA+/- and GBA+/+ macrophages with the Mycobacterium tuberculosis H37Rv strain showed that impaired mobility and phagocytic activity were correlated with reduced levels of bacterial engulfment and replication suggesting that GD may be protective against tuberculosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10686692PMC
http://dx.doi.org/10.1093/infdis/jiad141DOI Listing

Publication Analysis

Top Keywords

gba mutation
12
human-induced pluripotent
8
pluripotent stem
8
stem cells
8
restores normal
8
mycobacterium tuberculosis
8
gba-/- gba+/-
8
gba+/- gba+/+
8
crispr correction
4
gba
4

Similar Publications

Developing Allosteric Chaperones for -Associated Disorders-An Integrated Computational and Experimental Approach.

Int J Mol Sci

December 2024

Gain Therapeutics Sucursal en España, Parc Científic de Barcelona, 08028 Barcelona, Spain.

Mutations in the gene, which encodes the lysosomal enzyme glucocerebrosidase (GCase), are associated with Gaucher disease and increased risk of Parkinson's disease. This study describes the discovery and characterization of novel allosteric pharmacological chaperones for GCase through an innovative computational approach combined with experimental validation. Utilizing virtual screening and structure-activity relationship optimization, researchers identified several compounds that significantly enhance GCase activity and stability across various cellular models, including patient-derived fibroblasts and neuronal cells harboring mutations.

View Article and Find Full Text PDF

Parkinson's disease (PD) is considered to be the second most prominent neurodegenerative disease and has a global prevalence. Glucocerebrosidase () gene mutations represent a significant hereditary risk factor for the development of PD and have a profound impact on the motor and cognitive progression of the disease. The aim of this review is to summarize the literature data on the prevalence, type, and peculiarities of mutations in populations of different ethnic backgrounds.

View Article and Find Full Text PDF

GBA is the major risk gene for Parkinson's disease (PD) and Dementia with Lewy Bodies (DLB), two common α-synucleinopathies with cognitive deficits. We investigated the role of mutant GBA in cognitive decline by utilizing Gba (L444P) mutant, SNCA transgenic (tg), and Gba-SNCA double mutant mice. Notably, Gba mutant mice showed early cognitive deficits but lacked PD-like motor deficits or α-synuclein pathology.

View Article and Find Full Text PDF

Brain age in genetic and idiopathic Parkinson's disease.

Brain Commun

December 2024

Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock-Greifswald, Rostock 18147, Germany.

The brain-age gap, i.e. the difference between the brain age estimated from structural MRI data and the chronological age of an individual, has been proposed as a summary measure of brain integrity in neurodegenerative diseases.

View Article and Find Full Text PDF

Objectives: Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) haploinsufficiency is a rare genetic condition characterized by development of immune cytopenia, hypogammaglobulinemia, and/or lymphoproliferative disorder, as well as multiple autoimmunity. Treatment with abatacept was shown to alleviate autoimmune conditions, yet its long-lasting impact on bone marrow function remains undetermined.

Methods: We here present the case of a now 39-year-old woman with CTLA-4 haploinsufficiency with predominant CNS affection, yet multiorgan autoimmunity and lymphopenia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!