Background: Artificial habitats can allow many fish to flock together and interact and have been widely used to restore and protect fishery resources. The piece of research intends to elucidate the relationship of microbial communities between tilapia (Oreochromis mossambicus) intestines and artificial fishery habitats (water and sediments). Hence, 16 S rDNA sequencing technology was used to study the bacterial communities from intestines, water, and sediments.
Results: The results showed that the tilapia intestines had the lowest richness of Operational Taxonomic Units (OTUs) and the lowest diversity of the bacterial community compared to water and sediments. The intestine, water, and sediment microbial communities shared many OTUs. Overall, 663 shared OTUs were identified from the tilapia intestines (76.20%), the surrounding water (71.14%), and sediment (56.86%) in artificial habitats. However, there were unique OTUs that were detected in different sample types. There were 81, 77 and 112 unique OTUs observed in tilapia intestines, the surrounding water and sediment, respectively. Proteobacteria, Cyanobacteria, Actinobacteria, Firmicutes, Fusobacteria, and Bacteroidetes were the most common and dominant bacterial phyla between the tilapia intestines and habitats. In the two groups, the microbial communities were similar in the taxonomic composition but different in the abundance of bacterial phyla. Interestingly, Firmicutes increased, while Fusobacteria decreased in artificial habitats. These findings indicated that the artificial habitats had fewer effects on the water environment and indicated that the mode of artificial habitats could have an effect on the enriched bacteria in the tilapia intestines.
Conclusions: This study analysed the bacterial communities of artificial habitats from the intestines, water, and sediments, which can explain the relationship between the tilapia intestines and habitats and strengthen the value of ecological services provided by artificial habitats.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10165841 | PMC |
http://dx.doi.org/10.1186/s12862-023-02120-2 | DOI Listing |
Ying Yong Sheng Tai Xue Bao
October 2024
Faculty of Geography, Yunnan Normal University, Kunming 650500, China.
There are obvious contradictions between the development of plateau mountain urban agglomerations and the protection of ecological environment, with the quality of habitat being closely related to land use changes during urbanization. Based on the land use data of central Yunnan urban agglomeration in 2000, 2010, and 2020, we analyzed the spatio-temporal variations of land use and habitat quality, and used PLUS model and InVEST model to predict the status of land use and habitat quality in 2030 under three scenarios: natural development, urban deve-lopment, and ecological protection. The results showed that the artificial surface area of the study area increased significantly from 2000 to 2020, mainly distributed in the areas with very low and medium topographic gradients, most of which were transformed from the cultivated land in the dam area with slow slope.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
IFP Énergies Nouvelles (IFPEN), Direction Sciences de La Terre Et Technologies de L'Environnement, 1 Et 4 Avenue de Bois-Préau, 92852, Rueil-Malmaison Cedex, France.
The ubiquitous presence of fragmented plastic particles needs comprehensive understanding of its fate in the environment. The long-term persistence of microplastics (MPs) in the environment is a significant threat to the ecosystem. Even though various degradation mechanisms (physical, chemical, and biological) of commonly used plastics have been demonstrated, quantifying the degradation of MPs over time to predict the consequence of plastic littering and its persistence in the environment remains a challenge.
View Article and Find Full Text PDFSci Data
December 2024
Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs, Guangdong Modern Recreational Fisheries Engineering Technology Center, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China.
The ratmouth barbel (Ptychidio jordani) is a critically endangered freshwater fish from the Cyprinidae family, primarily due to overfishing and habitat disruption. To address the challenges of its shrinking wild populations and the difficulties in artificial reproduction, we sequenced, assembled, and annotated a high-quality chromosome-level genome of P. jordani using next-generation short-read sequencing, third-generation long-read sequencing, and Hi-C sequencing.
View Article and Find Full Text PDFEnviron Health (Wash)
December 2024
Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China.
The adverse effect of ambient PM exposure on very early pregnancy (VEP) remains controversial among epidemiological studies but is supported by toxicological evidence. We adopted a multicenter retrospective cohort of 141,040 cycles to evaluate the effect of PM exposure on the VEP using the fertilization and embryo transfer platform and high-resolution PM data in China. We first investigated the association between PM exposure 1 week before and 1 week after the embryo transfer date and VEP.
View Article and Find Full Text PDFJ Anim Ecol
December 2024
Field Museum of Natural History, Chicago, Illinois, USA.
Animal colour patterns are often accompanied by specific, synergistic behaviours to most effectively defend prey against visual predators. Given the inherent context-dependence of colour perception, understanding how these colour-behaviour synergies function in a species' natural environment is crucial. For example, refuge-building species create a unique visual environment where most (or all) of the body is obscured unless closely inspected.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!