Protein aggregation-inhibition: a therapeutic route from Parkinson's disease to sickle cell anemia.

Crit Rev Biochem Mol Biol

Biosystems and Integrative Sciences Institute, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal.

Published: February 2023

Protein aggregation is implicated in multiple diseases, so-called proteinopathies, ranging from neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease (PD) to type 2 diabetes mellitus and sickle cell disease (SCD). The structure of the protein aggregates and the kinetics and mechanisms of aggregation have been the object of intense research over the years toward the development of therapeutic routes, including the design of aggregation inhibitors. Nonetheless, the rational design of drugs targeting aggregation inhibition remains a challenging endeavor because of multiple, disease-specific factors, including an incomplete understanding of protein function, the multitude of toxic and non-toxic protein aggregates, the lack of specific drug binding targets, discrepant action mechanisms of aggregation inhibitors, or a low selectivity, specificity, and/or drug potency, reflected in the high concentrations required for some inhibitors to be effective. Herein, we provide a perspective of this therapeutic route with emphasis on small molecules and peptide-based drugs in two diverse diseases, PD and SCD, aiming at establishing links among proposed aggregation inhibitors. The small and large length-scale regimes of the hydrophobic effect are discussed in light of the importance of hydrophobic interactions in proteinopathies. Some simulation results are reported on model peptides, illustrating the impact of hydrophobic and hydrophilic groups in water's hydrogen-bond network with an impact on drug binding. The seeming importance of aromatic rings and hydroxyl groups in protein-aggregation-inhibitor-drugs is emphasized along with the challenges associated with some inhibitors, limiting their development into effective therapeutic options, and questioning the potential of this therapeutic route.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10409238.2023.2201406DOI Listing

Publication Analysis

Top Keywords

therapeutic route
12
aggregation inhibitors
12
parkinson's disease
8
sickle cell
8
protein aggregates
8
mechanisms aggregation
8
drug binding
8
aggregation
6
protein
5
therapeutic
5

Similar Publications

Background: Cystic fibrosis is a multisystem disease characterised by the production of thick secretions causing recurrent pulmonary infection, often with unusual bacteria. Intravenous (IV) antibiotics are commonly used in the treatment of acute deteriorations in symptoms (pulmonary exacerbations); however, recently the assumption that exacerbations are due to increases in bacterial burden has been questioned. This is an update of a previously published review.

View Article and Find Full Text PDF

Purpose: Diabetic encephalopathy (DE) is one of the complications of diabetes that affects the brain. In the Ayurveda system of medicine, Vasant Kusumakar Rasa (VKR) is cited as a classical herbo-mineral formulation for diabetes. However, the role of VKR in DE is still unclear.

View Article and Find Full Text PDF

A novel non-invasive murine model for rapidly testing drug activity via inhalation administration against .

Front Pharmacol

January 2025

State Key Laboratory of Respiratory Disease, Joint School of Life Sciences, Guangzhou Chest Hospital, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, China.

The efficacy of many compounds against is often limited when administered via conventional oral or injection routes due to suboptimal pharmacokinetic characteristics. Inhalation-based delivery methods have been investigated to achieve high local therapeutic doses in the lungs. However, previous models, typically employing wild-type strains, were intricate, time-consuming, labor-intensive, and with poor reproducibility.

View Article and Find Full Text PDF

Although various colorectal cancer (CRC)-targeted nanoparticles have been developed to selectively deliver anticancer agents to tumor tissues, severe off-target side effects still persist due to unwanted systemic nanoparticle distribution, limiting the therapeutic outcome. Here, by elucidating a tumor-selective nanoparticle delivery mechanism occurring at the colorectal lumen-tumor interface, an alternative CRC-targeted delivery route is proposed, which enables highly tumor-selective delivery without systemic distribution, through direct drug delivery from the outside of the body (colorectal lumen) to tumors in the colorectum. Owing to the presence of accessible tumor-specific receptors such as CD44 at the colorectal lumen-tumor interface, but not at the colorectal lumen-normal tissue interface, colorectal luminal surface (CLS)-targeting ligand-functionalized nanoparticles selectively accumulate in CRC tissues without systemic distribution, resulting in successful local CRC therapy.

View Article and Find Full Text PDF

Ischemia-reperfusion (IR) injury remains a major contributor to organ dysfunction following transient ischemic insults. Although numerous interventions have been found effective to reduce IR injury in preclinical models, none of these therapies have been successfully translated to the clinical setting. In the context of the persistent translational gap, we systematically investigated the mechanisms implicated in IR injury using kidney donation and transplantation as a clinical model of IR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!