Members of the polycystin family (PKD2 and PKD2L1) of transient receptor potential (TRP) channels conduct Ca and depolarizing monovalent cations. Variants in PKD2 cause autosomal dominant polycystic kidney disease (ADPKD) in humans, whereas loss of PKD2L1 expression causes seizure susceptibility in mice. Understanding structural and functional regulation of these channels will provide the basis for interpreting their molecular dysregulation in disease states. However, the complete structures of polycystins are unresolved, as are the conformational changes regulating their conductive states. To provide a holistic understanding of the polycystin gating cycle, we use computational prediction tools to model missing PKD2L1 structural motifs and evaluate more than 150 mutations in an unbiased mutagenic functional screen of the entire pore module. Our results provide an energetic landscape of the polycystin pore, which enumerates gating sensitive sites and interactions required for opening, inactivation, and subsequent desensitization. These findings identify the external pore helices and specific cross-domain interactions as critical structural regulators controlling the polycystin ion channel conductive and nonconductive states.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10328073PMC
http://dx.doi.org/10.15252/embr.202356783DOI Listing

Publication Analysis

Top Keywords

energetic landscape
8
landscape polycystin
8
polycystin
5
polycystin channel
4
channel gating
4
gating members
4
members polycystin
4
polycystin family
4
family pkd2
4
pkd2 pkd2l1
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!