Three kinds of sanshools were separated from Zanthoxylum bungeanum oleoresin by high-speed countercurrent chromatography. Sanshools are a series of amide compounds extracted from the Zanthoxylum bungeanum. Due to similar structures, polarities, and dissociation constants, it was challenging to select an appropriate solvent system for their complete separation by countercurrent chromatography. To address this challenge, a solvent-system-selection strategy was proposed to identify a relatively suitable solvent system. Additionally, a separation procedure incorporating multi-elution modes selection was established to separate similar compounds in a logical order. Ultimately, a solvent system comprising n-hexane:ethyl acetate:methanol:water in a ratio of 19:1:1:5.67 was selected. Three amide compounds with high purity were obtained through the use of recycling elution mode to improve separation resolution: hydroxy-ε-sanshool (8.4 mg; purity: 90.64%), hydroxy-α-sanshool (326.4 mg; purity: 98.96%), and hydroxy-β-sanshool (71.8 mg; purity: 98.26%) were obtained from 600 mg sanshool crude extract. The summarized solvent-system-selection strategy and separation procedure incorporating multi-elution modes may instruct countercurrent chromatography users, particularly novices, seeking to separate compounds with highly similar chemical properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jssc.202300115 | DOI Listing |
Curr Med Chem
January 2025
School of Pharmacy, Changzhou University, Changzhou, 213164, China.
Curcumin is a natural plant pigment that has been widely used in food production, drug development, and textile engineering. Gaining a deep understanding of the biological activities of curcumin and obtaining high-purity curcumin are of vital importance for basic research and applications of curcumin. In this review, we summarize recent advances in curcumin, mainly focusing on the methods of extracting and purifying curcumin from turmeric as well as applications based on biological activity.
View Article and Find Full Text PDFMolecules
January 2025
College of Chemistry & Pharmacy, Northwest A&F University, 22 Xiong Road, Yangling 712100, China.
The separation of large polar constituents presents a substantial challenge in natural product research when employing column chromatography techniques, as the process is both complex and time-consuming. In this study, an acetonitrile/tetrahydrofuran/di-(2-ethylhexyl) phosphoric acid/aqueous saturated sodium chloride solvent system was developed and utilized for the countercurrent chromatography of polar constituents from L. seeds.
View Article and Find Full Text PDFJ Chromatogr Sci
January 2025
Characteristic Biology Resources Research Center, Northwest Institute of Plateau Biology, Chinese Academy of Science, No. 23, Xinning Road, Chengxi District, Xining, Qinghai 810001, P. R. China.
Separation of polar compounds especially with similar polarities is challenging. In the present study, three polar compounds with similar polarities, including gentiopicroside, sweroside and mangiferin, have been successfully separated from Swertia mussotii by a combination of two counter-current chromatography modes. With the selected solvent system of ethyl acetate/n-butanol/water (8/2/10, v/v), a continuous injection mode was firstly employed.
View Article and Find Full Text PDFMolecules
December 2024
Department of Food Chemistry (170B), Institute of Food Chemistry, University of Hohenheim, Garbenstraβe 28, D-70599 Stuttgart, Germany.
The exploration of natural antifungal substances from algal origins is significant due to the increasing resistance of pathogens to conventional antifungal agents and the growing consumer demand for natural products. This manuscript represents the inaugural investigation into the antifungal attributes of bioactive compounds extracted from via supercritical carbon dioxide (scCO) extraction utilizing contemporary countercurrent chromatography (CCC). In aligning with the prospective utilization of this extract within the agricultural sector, this study also serves as the preliminary report demonstrating the capability of scCO extract to enhance the activity of plant resistance enzymes.
View Article and Find Full Text PDFFoods
December 2024
Amur Branch of Botanical Garden-Institute, Far Eastern Branch of Russian Academy of Sciences, Blagoveshchensk 675000, Russia.
An antiviral effect of extracts prepared from aerial parts of nine species and from leaves of two species of the genus L. was investigated for potential antiviral activity toward influenza A (H1N1) virus. The toxicity of dry extracts was analyzed, and the most selective extract was identified in vitro.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!