Drug discovery, which plays a vital role in maintaining human health, is a persistent challenge. Fragment-based drug discovery (FBDD) is one of the strategies for the discovery of novel candidate compounds. Computational tools in FBDD could help to identify potential drug leads in a cost-efficient and time-saving manner. The Auto Core Fragment in silico Screening (ACFIS) server is a well-established and effective online tool for FBDD. However, the accurate prediction of protein-fragment binding mode and affinity is still a major challenge for FBDD due to weak binding affinity. Here, we present an updated version (ACFIS 2.0), that incorporates a dynamic fragment growing strategy to consider protein flexibility. The major improvements of ACFIS 2.0 include (i) increased accuracy of hit compound identification (from 75.4% to 88.5% using the same test set), (ii) improved rationality of the protein-fragment binding mode, (iii) increased structural diversity due to expanded fragment libraries and (iv) inclusion of more comprehensive functionality for predicting molecular properties. Three successful cases of drug lead discovery using ACFIS 2.0 are described, including drugs leads to treat Parkinson's disease, cancer, and major depressive disorder. These cases demonstrate the utility of this web-based server. ACFIS 2.0 is freely available at http://chemyang.ccnu.edu.cn/ccb/server/ACFIS2/.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10320121 | PMC |
http://dx.doi.org/10.1093/nar/gkad348 | DOI Listing |
Org Lett
January 2025
Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, Hawai'i 96720, United States.
A novel sesquiterpene lactone derivative, vernonolide A (), featuring an unprecedented carbon skeleton, along with its plausible biosynthetic precursor, vercinolide I (), and eight known sesquiterpene lactones (-) were isolated and characterized from the whole plants of (L.). The structures of and were elucidated using nuclear magnetic resonance spectroscopic analysis and calculated and experimental electronic circular dichroism spectra.
View Article and Find Full Text PDFMol Inform
January 2025
Department of Applied Chemistry, School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan.
Recent advances in machine learning have significantly impacted molecular design, notably the molecular generation method combining the chemical variational autoencoder (VAE) with Gaussian mixture regression (GMR). In this method, a mathematical model is constructed with X as the latent variable of the molecule and Y as the target properties and activities. Through direct inverse analysis of this model, it is possible to generate molecules with the desired target properties.
View Article and Find Full Text PDFBiomed Chromatogr
February 2025
School of Pharmaceutical Sciences, Jilin University, Changchun, People's Republic of China.
Previous studies have suggested that ginsenoside Rg glycine ester derivative (RG) exhibits therapeutic potential in mitigating hypoxia. This study aimed to elucidate the potential mechanism of RG in hypoxia injury through a combined approach of metabolomics and network pharmacology. Initially, a CoCl-induced cell hypoxia model was established, and the therapeutic impact of RG on biochemical indices was evaluated.
View Article and Find Full Text PDFExpert Opin Drug Deliv
January 2025
Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK.
Introduction: mRNA therapeutics were a niche area in drug development before COVIDvaccines. Now they are used in vaccine development, for non-viral therapeuticgenome editing, chimericantigen receptor T (CAR T) celltherapies and protein replacement. mRNAis large, charged, and easily degraded by nucleases.
View Article and Find Full Text PDFJ Comput Chem
January 2025
Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India.
Cyclooxygenase-2 (COX-2) is an enzyme that plays a crucial role in inflammation by converting arachidonic acid into prostaglandins. The overexpression of enzyme is associated with conditions such as cancer, arthritis, and Alzheimer's disease (AD), where it contributes to neuroinflammation. In silico virtual screening is pivotal in early-stage drug discovery; however, the absence of coding or machine learning expertise can impede the development of reliable computational models capable of accurately predicting inhibitor compounds based on their chemical structure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!