Design of multifunctional nanoplatforms combined with ultrasound-targeted microbubble destruction (UTMD) technology for enhanced tumor accumulation is feasible to solve the bottleneck of theranostics. Herein, we present the development of zwitterion-modified gadolinium (Gd)-chelated core-shell tecto dendrimers (CSTDs) as a nanomedicine platform (PCSTD-Gd) for enhanced magnetic resonance (MR) imaging-guided chemo-gene therapy of orthotopic breast cancer with the assistance of UTMD. In our design, CSTDs synthesized supramolecular recognition of β-cyclodextrin and adamantane were covalently linked with tetraazacyclododecane tetraacetic acid-Gd(III) chelators, modified with 1,3-propane sultone to achieve good protein-resistance property, and used for co-delivery of an microRNA 21 inhibitor (miR 21i) and an anticancer drug doxorubicin (DOX). The overall design is quite advantageous and cooperative. The CSTDs with a greater size than single-generation core dendrimers have amplified the enhanced permeability and retention effect for better passive tumor targeting, with a larger relaxivity for sensitive MR imaging and serum-enhanced gene delivery efficiency due to the better compaction ability as well as the protein resistance ability, and with larger interior space for improved drug loading. Through the unique design and the assistance of UTMD, the obtained PCSTD-Gd/DOX/miR 21i polyplexes enable enhanced MR imaging-guided combined chemo-gene therapy of an orthotopic breast cancer model .

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3bm00375bDOI Listing

Publication Analysis

Top Keywords

orthotopic breast
12
breast cancer
12
core-shell tecto
8
nanomedicine platform
8
chemo-gene therapy
8
therapy orthotopic
8
assistance utmd
8
ultrasound-enhanced theranostics
4
theranostics orthotopic
4
cancer multifunctional
4

Similar Publications

Article Synopsis
  • Hypoxic tumors resist radiation due to low oxygen levels, which reduces the effectiveness of therapy; increasing oxygenation during treatment could enhance radiosensitivity.
  • Historical approaches to boost oxygen delivery to tumors have had limited success, but inhibiting cancer cell respiration may yield better results.
  • Research shows that the mitochondria-targeted antioxidant MitoQ can effectively radiosensitize breast tumors in mice, suggesting potential for its use alongside radiotherapy in clinical settings.
View Article and Find Full Text PDF

Combination chemotherapy remains essential for clinical management of triple-negative breast cancer (TNBC). Consequently, responses to individual agents cannot be easily delineated at the single patient level, even though some patients might not require all drugs in the combination. Herein, we conduct multi-omic analyses of orthotopic TNBC patient-derived xenografts (PDXs) treated with single agent carboplatin, docetaxel, or the combination.

View Article and Find Full Text PDF

Berberine shaping the tumor immune landscape via pyroptosis.

Cell Immunol

December 2024

State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China. Electronic address:

Pyroptosis is a programmed cell death (PCD) mainly mediated by the Gasdermin family of proteins, among which Gasdermin E (GSDME) is considered a tumor suppressor gene. GSDME can recruit immune cells to the tumor microenvironment (TME) and promote their effects. Activating and enhancing adaptive immunity through GSDME is a potential solution for anti-tumor therapy.

View Article and Find Full Text PDF

Quinoidal Semiconductor Nanoparticles for NIR-II Photoacoustic Imaging and Photoimmunotherapy of Cancer.

Adv Mater

December 2024

Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China.

Photoagents with ultra-high near-infrared II (NIR-II) light energy conversion efficiency hold great promise in tumor phototherapy due to their ability to penetrate deeper tissues and minimize damage to surrounding healthy cells. However, the development of NIR-II photoagents remain challenging. In this study, an all-fused-ring quinoidal acceptor-donor-acceptor (A-D-A) molecule, SKCN, with a BTP core is synthesized, and nanoparticles named FA-SNPs are prepared.

View Article and Find Full Text PDF

Engineering a Near-Infrared Spiro-Based Aggregation-Induced Emission Luminogen for DNAzyme-Sensitized Photothermal Therapy with High Efficiency and Accuracy.

J Am Chem Soc

December 2024

Department of Chemistry, the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong SAR, China.

Aggregation-induced emission luminogen (AIEgens)-based photothermal therapy (PTT) has grown into a sparkling frontier for tumor ablation. However, challenges remain due to the uncoordinated photoluminescence (PL) and photothermal properties of classical AIEgens, along with hyperthermia-induced antiapoptotic responses in tumor cells, hindering satisfactory therapeutic outcomes. Herein, a near-infrared (NIR) spiro-AIEgen was designed for boosted PTT by auxiliary DNAzyme-regulated tumor cell sensitization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!