Microscopy is being pursued to obtain richer and more accurate information, and there are many challenges in imaging depth and display dimension. In this paper, we propose a three-dimensional (3D) microscope acquisition method based on a zoom objective. It enables 3D imaging of thick microscopic specimens with continuous adjustable optical magnification. The zoom objective based on liquid lenses can quickly adjust the focal length, to expand the imaging depth and change the magnification by adjusting the voltage. Based on the zoom objective, an arc shooting mount is designed to accurately rotate the objective to obtain the parallax information of the specimen and generate parallax synthesis images for 3D display. A 3D display screen is used to verify the acquisition results. The experimental results show that the obtained parallax synthesis images can accurately and efficiently restore the 3D characteristics of the specimen. The proposed method has promising applications in industrial detection, microbial observation, medical surgery, and so on.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.487720 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!