Self-assembled nanogratings, inscribed by femtosecond laser writing in volume, are demonstrated in multicomponent alkali and alkaline earth containing alumino-borosilicate glasses. The laser beam pulse duration, pulse energy, and polarization, were varied to probe the nanogratings existence as a function of laser parameters. Moreover, laser-polarization dependent form birefringence, characteristic of nanogratings, was monitored through retardance measurements using polarized light microscopy. Glass composition was found to drastically impact the formation of nanogratings. For a sodium alumino-borosilicate glass, a maximum retardance of 168 nm (at 800 fs and 1000 nJ) could be measured. The effect of composition is discussed based on SiO content, BO/AlO ratio, and the Type II processing window is found to decrease as both (NaO + CaO)/AlO and BO/AlO ratios increase. Finally, an interpretation in the ability to form nanogratings from a glass viscosity viewpoint, and its dependency with respect to the temperature, is demonstrated. This work is brought into comparison with previously published data on commercial glasses, which further indicates the strong link between nanogratings formation, glass chemistry, and viscosity.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.488249DOI Listing

Publication Analysis

Top Keywords

nanogratings inscribed
8
alumino-borosilicate glasses
8
nanogratings
6
volume nanogratings
4
inscribed ultrafast
4
laser
4
ultrafast laser
4
laser alumino-borosilicate
4
glasses self-assembled
4
self-assembled nanogratings
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!