The ability to store large amounts of photonic quantum states is regarded as substantial for future optical quantum computation and communication technologies. However, research for multiplexed quantum memories has been focused on systems that show good performance only after an elaborate preparation of the storage media. This makes it generally more difficult to apply outside a laboratory environment. In this work, we demonstrate a multiplexed random-access memory to store up to four optical pulses using electromagnetically induced transparency in warm cesium vapor. Using a Λ-System on the hyperfine transitions of the Cs D1 line, we achieve a mean internal storage efficiency of 36% and a 1/e lifetime of 3.2 µs. In combination with future improvements, this work facilitates the implementation of multiplexed memories in future quantum communication and computation infrastructures.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.483642DOI Listing

Publication Analysis

Top Keywords

multiplexed random-access
8
warm cesium
8
cesium vapor
8
multiplexed
4
random-access optical
4
optical memory
4
memory warm
4
vapor ability
4
ability store
4
store large
4

Similar Publications

The human nervous system inspires the next generation of sensory and communication systems for robotics, human-machine interfaces (HMIs), biomedical applications, and artificial intelligence. Neuromorphic approaches address processing challenges; however, the vast number of sensors and their large-scale distribution complicate analog data manipulation. Conventional digital multiplexers are limited by complex circuit architecture and high supply voltage.

View Article and Find Full Text PDF

Extensive research is now being conducted on the design and construction of logic circuits utilizing quantum-dot cellular automata (QCA) technology. This area of study is of great interest due to the inherent advantages it offers, such as its compact size, high speed, low power dissipation, and enhanced switching frequency in the nanoscale domain. This work presents a design of a highly efficient RAM cell in QCA, utilizing a combination of a 3-input and 5-input Majority Voter (MV) gate, together with a 2 × 1 Multiplexer (MUX).

View Article and Find Full Text PDF

The ability to store large amounts of photonic quantum states is regarded as substantial for future optical quantum computation and communication technologies. However, research for multiplexed quantum memories has been focused on systems that show good performance only after an elaborate preparation of the storage media. This makes it generally more difficult to apply outside a laboratory environment.

View Article and Find Full Text PDF

DNA storage in thermoresponsive microcapsules for repeated random multiplexed data access.

Nat Nanotechnol

August 2023

Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.

DNA has emerged as an attractive medium for archival data storage due to its durability and high information density. Scalable parallel random access to information is a desirable property of any storage system. For DNA-based storage systems, however, this still needs to be robustly established.

View Article and Find Full Text PDF

Probabilistic computing is an emerging computational paradigm that uses probabilistic circuits to efficiently solve optimization problems such as invertible logic, where traditional digital computations are difficult to solve. This paper proposes a true random number generator (TRNG) based on resistive random-access memory (RRAM), which is combined with an activation function implemented by a piecewise linear function to form a standard p-bit cell, one of the most important parts of a p-circuit. A p-bit multiplexing strategy is also applied to reduce the number of p-bits and improve resource utilization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!