Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Surface hydroxylation is the basis for material removal in chemical mechanical polishing (CMP) of monocrystalline silicon, diamond, and YAG crystals. Existing studies use experimental observations to investigate surface hydroxylation, but lack in-depth understanding of the hydroxylation process. In this paper, for the first time to the best of our knowledge, we analyze the surface hydroxylation process of YAG crystals in an aqueous solution using first-principle calculations. The presence of surface hydroxylation was verified by X-ray photoelectron spectroscopy (XPS) and thermogravimetric mass spectrometry (TGA-MS) detections. This study complements the existing research on the material removal mechanism of the CMP process of YAG crystals and provides theoretical support for the future improvement of the CMP technology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.485738 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!