AI Article Synopsis

  • This research introduces a method for locating manholes using distributed fiber optic sensing combined with weakly supervised machine learning.* -
  • It innovatively utilizes ambient environmental data for mapping underground cables, aiming to improve efficiency and minimize fieldwork.* -
  • The method employs a selective data sampling scheme and an attention-based deep learning model to work effectively with limited annotations, and has been validated using real field data from various fiber networks.*

Article Abstract

We present a manhole localization method based on distributed fiber optic sensing and weakly supervised machine learning techniques. For the first time to our knowledge, ambient environment data is used for underground cable mapping with the promise of enhancing operational efficiency and reducing field work. To effectively accommodate the weak informativeness of ambient data, a selective data sampling scheme and an attention-based deep multiple instance classification model are adopted, which only requires weakly annotated data. The proposed approach is validated on field data collected by a fiber sensing system over multiple existing fiber networks.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.484083DOI Listing

Publication Analysis

Top Keywords

weakly supervised
8
manhole localization
8
fiber networks
8
data
5
ambient noise-based
4
noise-based weakly
4
supervised manhole
4
localization methods
4
methods deployed
4
fiber
4

Similar Publications

Oral squamous cell carcinoma (OSCC) is the most common form of oral cancer, with increasing global incidence and have poor prognosis. Tumour-infiltrating lymphocytes (TILs) are recognized as a key prognostic indicator and play a vital role in OSCC grading. However, current methods for TILs quantification are based on subjective visual assessments, leading to inter-observer variability and inconsistent diagnostic reproducibility.

View Article and Find Full Text PDF

Deep neural networks (DNNs) have demonstrated exceptional performance across various image segmentation tasks. However, the process of preparing datasets for training segmentation DNNs is both labor-intensive and costly, as it typically requires pixel-level annotations for each object of interest. To mitigate this challenge, alternative approaches such as using weak labels (e.

View Article and Find Full Text PDF

When multiple instance learning meets foundation models: Advancing histological whole slide image analysis.

Med Image Anal

January 2025

Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Southern Medical University, Guangzhou, China. Electronic address:

Deep multiple instance learning (MIL) pipelines are the mainstream weakly supervised learning methodologies for whole slide image (WSI) classification. However, it remains unclear how these widely used approaches compare to each other, given the recent proliferation of foundation models (FMs) for patch-level embedding and the diversity of slide-level aggregations. This paper implemented and systematically compared six FMs and six recent MIL methods by organizing different feature extractions and aggregations across seven clinically relevant end-to-end prediction tasks using WSIs from 4044 patients with four different cancer types.

View Article and Find Full Text PDF

Several studies explored the application of artificial intelligence (AI) in magnetic resonance imaging (MRI)-based rectal cancer (RC) staging, but a comprehensive evaluation remains lacking. This systematic review aims to review the performance of AI models in MRI-based RC staging. PubMed and Embase were searched from the inception of the database till October 2024 without any language and year restrictions.

View Article and Find Full Text PDF

A major challenge in neuroscience is visualizing the structure of the human brain at different scales. Traditional histology reveals micro- and meso-scale brain features but suffers from staining variability, tissue damage, and distortion, which impedes accurate 3D reconstructions. The emerging label-free serial sectioning optical coherence tomography (S-OCT) technique offers uniform 3D imaging capability across samples but has poor histological interpretability despite its sensitivity to cortical features.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!