We propose and experimentally demonstrate a low-loss, radio frequency (RF) photonic signal combiner with flat response from 1 GHz to 15 GHz and low group delay variation of 9 ps. The distributed group array photodetector combiner (GAPC) is implemented in a scalable Si photonics platform and has applications in RF photonic systems that rely on combining massive numbers of photonic signals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.484839 | DOI Listing |
We propose and experimentally demonstrate a low-loss, radio frequency (RF) photonic signal combiner with flat response from 1 GHz to 15 GHz and low group delay variation of 9 ps. The distributed group array photodetector combiner (GAPC) is implemented in a scalable Si photonics platform and has applications in RF photonic systems that rely on combining massive numbers of photonic signals.
View Article and Find Full Text PDFIEEE Trans Biomed Eng
July 2013
GT-Bionics Laboratory, School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30308, USA.
A low-noise wideband receiver (Rx) is presented for a multichannel wireless implantable neural recording (WINeR) system that utilizes time-division multiplexing of pulse width modulated (PWM) samples. The WINeR-6 Rx consists of four parts: 1) RF front end; 2) signal conditioning; 3) analog output (AO); and 4) field-programmable gate array (FPGA) back end. The RF front end receives RF-modulated neural signals in the 403-490 MHz band with a wide bandwidth of 18 MHz.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!