The stimulus-responsive smart switching of aggregation-induced emission (AIE) features has attracted considerable attention in 4D information encryption, optical sensors and biological imaging. Nevertheless, for some AIE-inactive triphenylamine (TPA) derivatives, activating the fluorescence channel of TPA remains a challenge based on their intrinsic molecular configuration. Here, we took a new design strategy for opening a new fluorescence channel and enhancing AIE efficiency for (E)-1-(((4-(diphenylamino)phenyl)imino)methyl)naphthalen-2-ol. The turn-on methodology employed is based on pressure induction. Combining ultrafast and Raman spectra with high-pressure in situ showed that activating the new fluorescence channel stemmed from restraining intramolecular twist rotation. Twisted intramolecular charge transfer (TICT) and intramolecular vibration were restricted, which induced an increase in AIE efficiency. This approach provides a new strategy for the development of stimulus-responsive smart-switch materials.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.481432DOI Listing

Publication Analysis

Top Keywords

fluorescence channel
16
activating fluorescence
12
aie efficiency
8
turn-on stimuli-responsive
4
stimuli-responsive switch
4
switch strategies
4
strategies activating
4
fluorescence
4
channel
4
channel pressure
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!