Lorentz famous theorem leads to clear reciprocity conditions for linear, time-invariant media based on their constitutive parameters. By contrast, reciprocity conditions for linear time-varying media are not fully explored. In this paper, we investigate whether, and how a structure containing a time-periodic medium can be truly identified as reciprocal or not. To that end, a necessary and sufficient condition is derived which requires both the constitutive parameters and the electromagnetic fields inside the dynamic structure. As solving for the fields for such problems is challenging, a perturbative approach is proposed which expresses the aforementioned non-reciprocity condition in terms of the electromagnetic fields and the Green's functions of the unperturbed static problem and is particularly applicable for the case of structures with weak time modulation. Reciprocity of two famous canonical time-varying structures are then studied using the proposed approach and their reciprocity/non-reciprocity is investigated. In the case of one-dimensional propagation in a static medium with two point-wise modulations, our proposed theory clearly explains the often observed maximization of non-reciprocity when the modulation phase difference between the two points is 90 degrees. In order to validate the perturbative approach, analytical and Finite-Difference Time-Domain (FDTD) methods are employed. Then, solutions are compared and considerable agreement between them is observed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.476913 | DOI Listing |
Anal Bioanal Chem
January 2025
Statistical Engineering Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899-8980, USA.
Closely related species of Salmonidae, including Pacific and Atlantic salmon, can be distinguished from one another based on nucleotide sequences from the cytochrome c oxidase sub-unit 1 mitochondrial gene (COI), using ensembles of fragments aligned to genetic barcodes that serve as digital proxies for the relevant species. This is accomplished by exploiting both the nucleotide sequences and their quality scores recorded in a FASTQ file obtained via Next Generation (NextGen) Sequencing of mitochondrial DNA extracted from Coho salmon caught with hook and line in the Gulf of Alaska. The alignment is done using MUSCLE (Muscle 5.
View Article and Find Full Text PDFJ Neurosci
January 2025
Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
The cell adhesion molecule Leucine-Rich Repeat Transmembrane neuronal protein 2 (LRRTM2) is crucial for synapse development and function. However, our understanding of its endogenous trafficking has been limited due to difficulties in manipulating its coding sequence (CDS) using standard genome editing techniques. Instead, we replaced the entire LRRTM2 CDS by adapting a two-guide CRISPR knock-in method, enabling complete control of LRRTM2.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Center for Computational Quantum Physics, The Flatiron Institute, 162 Fifth Avenue, New York, New York, 10010, United States.
We present a generalization of the phaseless auxiliary-field quantum Monte Carlo (AFQMC) method to cavity quantum-electrodynamical (QED) matter systems. The method can be formulated in both the Coulomb and the dipole gauge. We verify its accuracy by benchmarking calculations on a set of small molecules against full configuration interaction and state-of-the-art QED coupled cluster (QED-CCSD) calculations.
View Article and Find Full Text PDFEcol Appl
January 2025
U.S. Geological Survey, Lower Mississippi-Gulf Water Science Center, Jackson, Mississippi, USA.
Subsidy-stress gradients offer a useful framework for understanding ecological responses to perturbation and may help inform ecological metrics in highly modified systems. Historic, region-wide shifts from bottomland hardwood forest to row crop agriculture can cause positively skewed impact gradients in alluvial plain ecoregions, resulting in tolerant organisms that typically exhibit a subsidy response (increased abundance in response to environmental stressors) shifting to a stress response (declining abundance at higher concentrations). As a result, observed biological tolerance in modified ecosystems may differ from less modified regions, creating significant challenges for detecting biological responses to restoration efforts.
View Article and Find Full Text PDFAging Cell
January 2025
Chemical and Biological Integrative Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul, Republic of Korea.
As emerging therapeutic strategies for aging and age-associated diseases, various biochemical approaches have been developed to selectively remove senescent cells, but how physical stimulus influences senescent cells and its possible application in senolytic therapy has not been reported yet. Here we developed a physical method to selectively stimulate senescent cells via low-intensity pulsed ultrasound (LIPUS) treatment. LIPUS stimulation did not affect the cell cycle, but selectively enhanced secretion of specific cytokines in senescent cells, known as the senescence-associated secretory phenotype (SASP), resulting in enhanced migration of monocytes/macrophages and upregulation of phagocytosis of senescent cells by M1 macrophage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!