We propose a scheme to realize a two-photon Jaynes-Cummings model for a single atom inside an optical cavity. It is shown that the interplay of a laser detuning and atom (cavity) pump (driven) field gives rise to the strong single photon blockade, two-photon bundles, and photon-induced tunneling. With the cavity driven field, strong photon blockade occurs in the weak coupling regime, and switching between single photon blockade and photon-induced tunneling at two-photon resonance are achievable via increasing the driven strength. By turning on the atom pump field, quantum switching between two-photon bundles and photon-induced tunneling at four-photon resonance are realized. More interestingly, the high-quality quantum switching between single photon blockade, two-photon bundles, and photon-induced tunneling at three-photon resonance is achieved with combining the atom pump and cavity driven fields simultaneously. In contrast to the standard two-level Jaynes-Cummings model, our scheme with generating a two-photon (multi-photon) Jaynes-Cummings model reveals a prominent strategy to engineer a series of special nonclassical quantum states, which may pave the way for investigating basic quantum devices to implement in quantum information processing and quantum networks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.487297 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!