AI Article Synopsis

  • This study explores mutual scattering—a technique using multiple light beams—to obtain structural information from opaque materials.
  • By comparing this method with traditional single-beam techniques, the researchers demonstrate that mutual scattering can detect changes in the position of a single scatterer among many, resulting in significantly enhanced sensitivity.
  • The findings suggest mutual scattering could revolutionize our ability to determine depth information in opaque samples and calculate complex scattering amplitudes more effectively.

Article Abstract

We investigate the potential of mutual scattering, i.e., light scattering with multiple properly phased incident beams, as a method to extract structural information from inside an opaque object. In particular, we study how sensitively the displacement of a single scatterer is detected in an optically dense sample of many (up to N = 1000) similar scatterers. By performing exact calculations on ensembles of many point scatterers, we compare the mutual scattering (from two beams) and the well-known differential cross-section (from one beam) in response to the change of location of a single dipole inside a configuration of randomly distributed similar dipoles. Our numerical examples show that mutual scattering provides speckle patterns with an angular sensitivity at least 10 times higher than the traditional one-beam techniques. By studying the "sensitivity" of mutual scattering, we demonstrate the possibility to determine the original depth relative to the incident surface of the displaced dipole in an opaque sample. Furthermore, we show that mutual scattering offers a new approach to determine the complex scattering amplitude.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.482472DOI Listing

Publication Analysis

Top Keywords

mutual scattering
24
single scatterer
8
scattering
8
mutual
6
sensing position
4
position single
4
scatterer opaque
4
opaque medium
4
medium mutual
4
scattering investigate
4

Similar Publications

Article Synopsis
  • Fast radio bursts (FRBs) are brief bursts of radio waves from distant galaxies, and their emission mechanisms are still debated, focusing on processes near a central engine versus shocks at large distances.
  • Researchers measured two scintillation scales for FRB 20221022A, one linked to the Milky Way and the other to its host galaxy, which allowed them to determine the FRB's emission region size to be less than 3 x 10 kilometers.
  • This size contradicts the large-distance model and suggests that the emission likely occurs close to a central compact object, supported by an observed S-shaped polarization angle, indicating a magnetospheric emission process.
View Article and Find Full Text PDF

Global Biases in Ecology and Conservation Research: Insight From Pollinator Studies.

Ecol Lett

January 2025

Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland.

In the fields of ecology and conservation, taxonomic and geographic biases may compromise scientific progress. Using pollinator research as a case study, we evaluate four drivers of these biases and propose solutions to address (i) untested generalisations from highly studied taxa, (ii) information accessibility, (iii) scattered environmental regulations and (iv) restricted infrastructure and funding resources. Expanding the taxonomic, functional and geographic breadth of research and legislation, and involving scientists in policymaking, can generate greater equity, accessibility and impact of future science.

View Article and Find Full Text PDF

Sticholysin I and II (St I/II) belong to the actinoporins family; these proteins form pores in host cell membranes by binding their N-terminal segment to the membrane, leading to protein-lipid (toroidal) pores. Peptides derived from actinoporins pore-forming domains replicate their folding properties and permeabilizing effects. Despite the advances in understanding how these proteins and peptides mediate pore formation, the role of different N-terminal segments in inducing membrane curvature is still unclear.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores toroidal dipole (TD) metasurfaces made from aluminum semicircles on a polyimide substrate, focusing on their behavior in the terahertz (THz) frequency range.
  • It was observed that as the outer radius of the semicircles increases, the resonance frequencies shift downwards due to increased inductance and capacitance.
  • The unique head-to-tail magnetic field distribution, resulting from the combination of TD resonances and current flow, enhances the Q-factor of the metasurfaces, making them promising for high sensitivity applications in the terahertz range.
View Article and Find Full Text PDF

Two two-element slotted patch multiple-input multiple-output (MIMO) antenna with coplanar waveguide (CPW) feed is proposed for deployment in implantable medical devices. Implantable devices are compact and demand high-gain antennae with unidirectional radiation patterns. Regarding compactness, the antenna has a size of 16 × 6×0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!