We present high-speed and wide-field EUV ptychography at 13.5 nm wavelength using a table-top high-order harmonic source. Compared to previous measurements, the total measurement time is significantly reduced by up to a factor of five by employing a scientific complementary metal oxide semiconductor (sCMOS) detector that is combined with an optimized multilayer mirror configuration. The fast frame rate of the sCMOS detector enables wide-field imaging with a field of view of 100 µm × 100 µm with an imaging speed of 4.6 Mpix/h. Furthermore, fast EUV wavefront characterization is employed using a combination of the sCMOS detector with orthogonal probe relaxation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.485779 | DOI Listing |
Rev Sci Instrum
December 2024
Institute for Plasma Research, Bhat, Gandhinagar 382 428, India.
Poloidal asymmetries in neutral and impurity ion temperatures and particle and impurity transports have been observed in many tokamaks. To investigate these asymmetries, space-resolved visible spectroscopic diagnostic of the ADTIYA-U tokamak has been upgraded to measure the spatial profile of Hα and impurities spectral line profile, ion temperature, and plasma rotation from both low and high field sides of the plasma, simultaneously with a better spatial resolution. This has been done by developing a linear array of 15 optical fibers as compared to the present linear array of nine fibers having a core diameter of 400 μm and coupling it to the entrance slit of a 1 m long high-resolution spectrometer of the existing diagnostic.
View Article and Find Full Text PDFEur Phys J C Part Fields
October 2024
Gran Sasso Science Institute, 67100 L'Aquila, Italy.
The CYGNO experiment aims to build a large ( m ) directional detector for rare event searches, such as nuclear recoils (NRs) induced by dark matter (DM), such as weakly interactive massive particles (WIMPs). The detector concept comprises a time projection chamber (TPC), filled with a He:CF 60/40 scintillating gas mixture at room temperature and atmospheric pressure, equipped with an amplification stage made of a stack of three gas electron multipliers (GEMs) which are coupled to an optical readout. The latter consists in scientific CMOS (sCMOS) cameras and photomultipliers tubes (PMTs).
View Article and Find Full Text PDFNeurophotonics
July 2024
Boston University, Department of Biomedical Engineering, Boston, Massachusetts, United States.
Significance: Widefield microscopy of the entire dorsal part of mouse cerebral cortex enables large-scale ("mesoscopic") imaging of different aspects of neuronal activity with spectrally compatible fluorescent indicators as well as hemodynamics via oxy- and deoxyhemoglobin absorption. Versatile and cost-effective imaging systems are needed for large-scale, color-multiplexed imaging of multiple fluorescent and intrinsic contrasts.
Aim: We aim to develop a system for mesoscopic imaging of two fluorescent and two reflectance channels.
Light Sci Appl
May 2024
Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China.
Structured illumination microscopy (SIM) has emerged as a promising super-resolution fluorescence imaging technique, offering diverse configurations and computational strategies to mitigate phototoxicity during real-time imaging of biological specimens. Traditional efforts to enhance system frame rates have concentrated on processing algorithms, like rolling reconstruction or reduced frame reconstruction, or on investments in costly sCMOS cameras with accelerated row readout rates. In this article, we introduce an approach to elevate SIM frame rates and region of interest (ROI) coverage at the hardware level, without necessitating an upsurge in camera expenses or intricate algorithms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!