Chiral properties of plasmonic metasurfaces, especially related to different absorption of left and right circularly polarized light leading to circular dichroism (CD), are a research hot topic in nanophotonics. There is often a need to understand the physical origin of CD for different chiral metasurfaces, and to get guidelines for the design of structures with optimized and robust CD. In this work, we numerically study CD at normal incidence in square arrays of elliptic nanoholes etched in thin metallic layers (Ag, Au, Al) on a glass substrate and tilted with respect to the symmetry axes. Strong CD arises in absorption spectra at the same wavelength region of extraordinary optical transmission, indicating highly resonant coupling between light and surface plasmon polaritons at the metal/glass and metal/air interfaces. We elucidate the physical origin of absorption CD by a careful comparison of optical spectra for different polarizations (linear and circular), with the aid of static and dynamic simulations of local enhancement of the electric field. Furthermore, we optimize the CD as a function of the ellipse parameters (diameters and tilt), the thickness of the metallic layer, and the lattice constant. We find that silver and gold metasurfaces are most useful for CD resonances above 600 nm, while aluminum metasurfaces are convenient for achieving strong CD resonances in the short-wavelength range of the visible regime and in the near UV. The results give a full picture of chiral optical effects at normal incidence in this simple nanohole array, and suggest interesting applications for chiral biomolecules sensing in such plasmonic geometries.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.485324DOI Listing

Publication Analysis

Top Keywords

circular dichroism
8
physical origin
8
normal incidence
8
dichroism plasmonic
4
plasmonic array
4
array elliptical
4
elliptical nanoholes
4
nanoholes square
4
square lattice
4
chiral
4

Similar Publications

Developing chiral plasmonic nanostructures represents a significant scientific challenge due to their multidisciplinary potential. Observations have revealed that the dichroic behavior of metal plasmons changes when chiral molecules are present in the system, offering promising applications in various fields such as nano-optics, asymmetric catalysis, polarization-sensitive photochemistry and molecular detection. In this study, we explored the synthesis of plasmonic gold nanoparticles and the role of cysteine in their chiroplasmonic properties.

View Article and Find Full Text PDF

Background: The growing number of AD patients is a public concern all over the world. During the decade, anti-amyloid beta-proteins (Aβ) monoclonal antibodies for AD patients have been developed. Among the immunotherapeutic agents, lecanemab is an anti-Aβ monoclonal antibody that binds to Aβ protofibrils (Aβ PFs), which is an intermediate molecule in Aβ species.

View Article and Find Full Text PDF

The influence of aqueous solutions of 2-(tetrafluoro(trifluoromethyl)-λ-sulfanyl-ethan-1-ol (CFSF-ethanol) and 2,2,2-trifluoroethanol (TFE) on the secondary structure of melittin was studied using circular dichroism (CD) and molecular dynamics (MD) simulations. In water, melittin transitions into a random coil. However, upon addition of even as little as 1% by volume of CFSF-ethanol, the secondary structure of melittin stabilizes as a helix.

View Article and Find Full Text PDF

Enantioseparation and enantiorecognition are crucial in the pharmaceutical analysis of chiral substances, impacting safety, efficacy, and regulatory compliance. Enantioseparation refers to the process of separating enantiomers from a mixture, typically achieved through chromatography techniques like HPLC and SFC. In contrast, enantiorecognition involves the identification of enantiomers based on their interaction with a chiral selector without the need for separation.

View Article and Find Full Text PDF

Endowing single-crystal polymers with circularly polarized luminescence.

Nat Commun

January 2025

Key Laboratory for Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.

The preparation of single-crystal polymers with circularly polarized luminesce (CPL) remains a challenging task in chemistry and materials science. Herein, we present the single-crystal-to-single-crystal topochemical photopolymerization of a chiral organic salt to achieve this goal. The in-situ reaction of 1,4-bis((E)-2-(pyridin-4-yl)vinyl)benzene (1) with chiral (+)- or (-)-camphorsulfonic acid (CSA) gives the monomer crystal 1[( + )/( - )-CSA] showing yellow CPL with a high luminescent dissymmetry factor |g| of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!