To perform setup procedures including both positional and dosimetric information, we developed a CT-CT rigid image registration algorithm utilizing water equivalent pathlength (WEPL)-based image registration and compared the resulting dose distribution with those of two other algorithms, intensity-based image registration and target-based image registration, in prostate cancer radiotherapy using the carbon-ion pencil beam scanning technique. We used the data of the carbon ion therapy planning CT and the four-weekly treatment CTs of 19 prostate cancer cases. Three CT-CT registration algorithms were used to register the treatment CTs to the planning CT. Intensity-based image registration uses CT voxel intensity information. Target-based image registration uses target position on the treatment CTs to register it to that on the planning CT. WEPL-based image registration registers the treatment CTs to the planning CT using WEPL values. Initial dose distributions were calculated using the planning CT with the lateral beam angles. The treatment plan parameters were optimized to administer the prescribed dose to the PTV on the planning CT. Weekly dose distributions using the three different algorithms were calculated by applying the treatment plan parameters to the weekly CT data. Dosimetry, including the dose received by 95% of the clinical target volume (CTV-D95), rectal volumes receiving > 20 Gy (RBE) (V20), > 30 Gy (RBE) (V30), and > 40 Gy (RBE) (V40), were calculated. Statistical significance was assessed using the Wilcoxon signed-rank test. Interfractional CTV displacement over all patients was 6.0 ± 2.7 mm (19.3 mm maximum standard amount). WEPL differences between the planning CT and the treatment CT were 1.2 ± 0.6 mm-HO (< 3.9 mm-HO), 1.7 ± 0.9 mm-HO (< 5.7 mm-HO) and 1.5 ± 0.7 mm-HO (< 3.6 mm-HO maxima) with the intensity-based image registration, target-based image registration, and WEPL-based image registration, respectively. For CTV coverage, the D95 values on the planning CT were > 95% of the prescribed dose in all cases. The mean CTV-D95 values were 95.8 ± 11.5% and 98.8 ± 1.7% with the intensity-based image registration and target-based image registration, respectively. The WEPL-based image registration was CTV-D95 to 99.0 ± 0.4% and rectal Dmax to 51.9 ± 1.9 Gy (RBE) compared to 49.4 ± 9.1 Gy (RBE) with intensity-based image registration and 52.2 ± 1.8 Gy (RBE) with target-based image registration. The WEPL-based image registration algorithm improved the target coverage from the other algorithms and reduced rectal dose from the target-based image registration, even though the magnitude of the interfractional variation was increased.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10167266PMC
http://dx.doi.org/10.1038/s41598-023-34339-wDOI Listing

Publication Analysis

Top Keywords

image registration
32
treatment cts
16
registration
9
image
8
wepl-based image
8
intensity-based image
8
target-based image
8
prostate cancer
8
cts planning
8
dose distributions
8

Similar Publications

Background: Despite fractional flow reserve (FFR)-guided deferral of revascularization, recurrent events in patients with diabetes or after myocardial infarction remain common. This study aimed to assess the association between FFR-negative but high-risk nonculprit lesions and clinical outcomes.

Methods: This is a patient-level pooled analysis of the prospective natural-history COMBINE (OCT-FFR) study (Optical Coherence Tomography Morphologic and Fractional Flow Reserve Assessment in Diabetes Mellitus Patients) and PECTUS-obs study (Identification of Risk Factors for Acute Coronary Events by OCT After STEMI and NSTEMI Patients With Residual Non- Flow Limiting Lesions).

View Article and Find Full Text PDF

Background: It is known that illicit and prescribed drugs impact pupil size, eye movement and function. Still, comprehensive quantitative evaluations under known ambient light conditions are lacking, when smartphones are used for monitoring.

Methods: In this clinical study (NCT05731999), four medicinal products with addiction risks were administered to 48 subjects (18-70 years old, all with informed consent, 12 subjects per drug).

View Article and Find Full Text PDF

Objective: The 2013 TCGA identified four molecular subgroups of endometrial cancer; however, the data results for most of the pathological features were varied and of low value for clinical application. Therefore, a meta-analysis of articles related to the clinicopathological features of molecular typing was performed to observe how the prevalence of the four subgroups varied across different pathological features and whether they were associated with certain specific pathological features and to understand how molecular typing may influence current pathological assessments.

Methods: PubMed, Embase, Web of Science, CNKI, Wanfang, and VIP were searched from the time of library construction until May 2024, and the following data were extracted: histological type, FIGO grade, FIGO stage, LVSI, depth of muscularis propria infiltration, and lymph node status of each TCGA group.

View Article and Find Full Text PDF

Introduction: SPLASH (NCT04647526) is a multicenter phase III trial evaluating the efficacy and safety of [Lu]Lu-PNT2002 radioligand therapy in metastatic castration-resistant prostate cancer (mCRPC). This study leveraged a lead-in phase to assess tissue dosimetry and evaluate preliminary safety and efficacy, prior to expansion into a randomized phase. Here we report those results.

View Article and Find Full Text PDF

Background: Leptomeningeal metastasis (LM) is a devastating complication of cancer that is difficult to treat. Thus, early diagnosis is essential for LM patients. However, cerebrospinal fluid (CSF) cytology has low sensitivity, and imaging approaches are ineffective.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!