Background: Psoriasis is a chronic inflammatory disease associated with systemic inflammation and comorbidities. Changes in the composition of the intestinal microbiome are involved in the pathogenesis of inflammatory diseases and metabolic syndrome. Characterizing the intestinal microbiome of patients with psoriasis may be relevant for the understanding of its clinical course and comorbidity prevention.
Objective: To characterize the intestinal microbiome of men with psoriasis compared to omnivore and vegetarian controls (without psoriasis).
Method: Cross-sectional study of 42 adult males: 21 omnivores with psoriasis; and controls: 14 omnivores and 7 vegetarian individuals. The characterization of the intestinal microbiome was performed by metagenomic analysis. Serum levels of lipopolysaccharide-binding protein (LPB) and C-reactive protein (CRP) were evaluated.
Results: The groups differed from each other regarding nutritional aspects and microbiome; individuals with psoriasis had a higher consumption of protein and lower consumption of fibers. Levels of LPB, CRP, and the Firmicutes/Bacteroidetes ratio were higher in the group with psoriasis than in the vegetarian group (p<0.05). The genera Prevotella, Mogibacterium, Dorea, Bifidobacterium and Coprococcus, differed in the group with psoriasis compared to vegetarians; the genera Mogibacterium, Collinsella and Desulfovibrio differed from omnivores. A microbiome pattern linked to psoriasis (plsPSO) was identified, which was associated with higher LPB levels (rho=0.39; p=0.02), and lower dietary fiber intake (rho=-0.71; p<0.01).
Study Limitations: Only adult men were evaluated.
Conclusion: A difference was identified in the intestinal microbiome of adult men with psoriasis when compared to healthy omnivores and vegetarian controls. The identified microbiome pattern was correlated with dietary fiber intake and serum levels of LPB.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10404490 | PMC |
http://dx.doi.org/10.1016/j.abd.2022.08.008 | DOI Listing |
Nat Commun
December 2024
Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China.
The potential for mitigating intestinal inflammation through the gut-bone axis in the treatment of osteoporosis is significant. While various gut-derived postbiotics or bacterial metabolites have been created as dietary supplements to prevent or reverse bone loss, their efficacy and safety still need improvement. Herein, a colon-targeted drug delivery system is developed using surface engineering of polyvinyl butyrate nanoparticles by shellac resin to achieve sustained release of postbiotics butyric acid at the colorectal site.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
The mechanism(s) underlying gut microbial metabolite (GMM) contribution towards alcohol-mediated cardiovascular disease (CVD) is unknown. Herein we observe elevation in circulating phenylacetylglutamine (PAGln), a known CVD-associated GMM, in individuals living with alcohol use disorder. In a male murine binge-on-chronic alcohol model, we confirm gut microbial reorganization, elevation in PAGln levels, and the presence of cardiovascular pathophysiology.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
This study investigates how microbiome colonization influences the development of intestinal type 3 immunity in neonates. The results showed that reduced oxygen levels in the small intestine of neonatal rats induced by Saccharomyces boulardii accelerated microbiome colonization and type 3 immunity development, which protected against Salmonella enterica serovar Typhimurium infection. Microbiome maturation increased the abundance of microbiome-encoded bile salt hydrolase (BSH) genes and hyocholic acid (HCA) levels.
View Article and Find Full Text PDFBrief Bioinform
November 2024
MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 866 Yuhangtang Road, Xihu District, Hangzhou, Zhejiang 310030, China.
Accurate and rapid taxonomic classifications are essential for systematically exploring organisms and metabolites in diverse environments. Many tools have been developed for biological taxonomic trees, but limitations apply, and a streamlined method for constructing chemical taxonomic trees is notably absent. We present the iPhylo suite (https://www.
View Article and Find Full Text PDFFront Immunol
December 2024
Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia.
The gut microbiota influences the reactivity of the immune system, and has emerged as an anti-inflammatory commensal. Here, we investigated whether its lysate could prevent severe forms of neuroinflammation in experimental autoimmune encephalomyelitis (EAE) in mice and how this preventive strategy affects the gut microbiota and immune response. Lysate of anaerobically cultured (Pd lysate) was orally administered to C57BL/6 mice in four weekly doses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!