Strict environmental laws have been enacted to regulate the emission of exhaust particulate matter (PM), which is one of the most hazardous pollutants that reduce air quality and pose a serious risk to the human health. In addition, non-exhaust PM, such as road wear, tire wear, and brake wear debris, is a significant source of airborne pollutants. Road dust less than 100 μm in size may include tire wear particles (TWPs), which are broken down into finer particles with sizes on the order of tens of micrometers because of weathering. TWPs can be transported to water bodies via runoff, potentially contaminating water systems and negatively affecting aquatic ecosystems. Therefore, ecotoxicity tests using reference TWPs are required to investigate the impact of TWPs on the human health and environment. In this study, aged TWPs were produced using dry-, wet-, and cryo-milling methods, and the dispersion stability of TWPs in dechlorinated water was evaluated. Aged TWPs prepared by dry- and wet-milling had an average particle size of 20 μm, whereas pristine TWPs had an irregular shape and average particle size of 100 μm. The capacity of the ball-milling cylinder and excessively long 28-d generation time constrain the amount of aged TWPs that can be produced through conventional milling. In contrast, cryo-milling reduces the particle size of TWPs at the rate of -275.0 μm/d, which is nine times higher than that upon dry- and wet-milling. Dispersed cryo-milled TWPs had a hydrodiameter of 2.02 μm and were more stable in the aqueous phase in relation to the other aged TWPs. The results of this study suggest that cryo-milled TWPs can be used for aquatic exposure assessments as controls for real-world TWPs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2023.121787 | DOI Listing |
J Contam Hydrol
December 2024
College of Marine and Environmental Sciences, Ministry of Education Key Laboratory of Marine Resource Chemistry and Food Technology, Tianjin University of Science & Technology, Tianjin 300457, China; Key Laboratory of Eco-restoration of Regional Contaminated Environment (Shenyang University), Ministry of Education, Shenyang 110044, China; Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, China. Electronic address:
Tire wear particles (TWPs), as a prevalent form of microplastic pollution in aquatic environments, have been shown to adsorb antibiotics, potentially exacerbating their toxic effects. This study provides a comprehensive analysis of the adsorption of ofloxacin (OFL), ciprofloxacin (CIP), sulfadiazine (SDZ), and tetracycline (TC) on TWPs that have undergone various aging processes, including cyclic freeze-thaw and ozone aging. We observed a significant increase in the specific surface area (SBET) of TWPs after aging, from an initial 2.
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China.
Tire wear particles (TWPs), generated from tire abrasion, contribute significantly to environmental contamination. The toxicity of TWPs to organisms has raised significant concerns, yet their effects on terrestrial plants remain unclear. Here, we investigated the long-term impact of pristine and naturally aged TWPs on water spinach () and its rhizospheric soil.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing 210044, China.
Water Res
November 2024
College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
Water Res
November 2024
College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
Rapid urbanization brought lots of serious environmental contamination, including the accumulation of heavy metals, acid rain, and the emission of tire wear particles (TWPs), with detrimental effects for terrestrial ecosystems. Nevertheless, how naturally aged TWPs affect the mobilization of heavy metals in soils under acid rain is still unclear. Here, we investigate the adsorption and transport mechanisms of Pb(II) co-existing with acid rainwater in soil-TWP mixtures via batch experiments, column experiments and modeling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!