This study delves into the microbial community complexity and its role in self-forming dynamic membrane (SFDM) systems, designed to remove nutrients and pollutants from wastewater, by means of the analysis of Next-Generation Sequencing (NGS) data. In these systems, microorganisms are naturally incorporated into the SFDM layer, which acts as a biological and physical filter. The microorganisms present in an innovative and highly efficient aerobic, electrochemically enhanced, encapsulated SFDM bioreactor were studied to elucidate the nature of the dominant microbial communities present in sludge and in encapsulated SFDM, patented as living membrane® (LM) of the experimental setup. The results were compared to those obtained from the microbial communities found in similar experimental reactors without an applied electric field. The data gathered from the NGS microbiome profiling showed that the microbial consortia found in the experimental systems are comprised of archaeal, bacterial, and fungal communities. However, the distribution of the microbial communities found in e-LMBR and LMBR had significant differences. The results showed that the presence of an intermittently applied electric field in e-LMBR promotes the growth of some types of microorganisms (mainly electroactive microorganisms) responsible for the highly efficient treatment of the wastewater and for the mitigation of the membrane fouling found for those bioreactors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.163965 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!