Effects of fluidised carriers on the community composition, settleability and energy production of indigenous microalgal consortia cultivated in treated wastewater.

Bioresour Technol

Water Reclamation Technology Department, R&D Center, Business Strategy Division, METAWATER Co., Ltd., JR Kanda Manseibashi Bldg. 1-25, Kanda-sudacho, Chiyoda-ku, Tokyo 1010041, Japan.

Published: August 2023

Fluidised-bed systems are a promising approach to microalgal cultivation, but few studies have considered their application to indigenous microalgal consortia (IMCs), which have high adaptability to wastewater. In this study, IMCs were cultivated in treated wastewater with and without fluidised carriers, and the effects of operating parameters were considered. Microalgae in the culture were confirmed to originate from the carriers, and the IMC presence on the carriers was promoted by decreasing the carrier replacement number and increasing the culture replacement volume. The presence of carriers enabled greater nutrient removal from the treated wastewater by the cultivated IMCs. Without carriers, IMCs in the culture were scattered and showed poor settleability. With carriers, IMCs in the culture exhibited good settleability owing to floc formation. The improved settleability with carriers also increased the energy production from sedimented IMCs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2023.129133DOI Listing

Publication Analysis

Top Keywords

treated wastewater
12
carriers
8
fluidised carriers
8
energy production
8
indigenous microalgal
8
microalgal consortia
8
cultivated treated
8
presence carriers
8
carriers imcs
8
imcs culture
8

Similar Publications

Promoting defect formation and inhibiting hydrogen evolution by S-doping NiFe layered double hydroxide for electrocatalytic reduction of nitrate to ammonia.

Water Res

December 2024

Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China. Electronic address:

Activation of HO cleavage for H* production by defect engineering eliminates the insufficient supply of protons in the NORR process under neutral conditions. However, it remains challenging to precisely control the defect formation for optimizing the equilibrium between H* production and H* binding. Here, we propose a strategy to boost defect generation through S-doping induced NiFe-LDH lattice distortion, and successfully optimize the balance of H* production and binding.

View Article and Find Full Text PDF

Construction materials are significantly exposed to ecological hazards due to the presence of hazardous chemical constituents found in industrial and agricultural solid wastes. This study aims to investigate the use of sawdust particles (SDPs) and sawdust wastewater (SDW) in alkali-activated composites (AACs) made from a mixture of different silicon-aluminum-based solid wastes (slag powder-SP, red mud-RM, fly ash-FA, and carbide slag-CS). The study examines the impact of SDP content, treated duration of SDPs, and SDW content on both fresh and hardened properties of the AACs, including electrical conductivity, fluidity, density, flexural and compressive strengths, and drying shrinkage.

View Article and Find Full Text PDF

The population has increased in recent decades, and as a result, the increase in urban wastewater has led to many environmental problems. In this study, the environmental impacts of the Southern Tehran treatment plant were assessed via life cycle assessment (LCA) (SimaPro 9.4.

View Article and Find Full Text PDF

Efficient Visible-Light-Driven Photocatalytic Degradation of Antibiotics in Water by MXene-Derived TiO-Supported SiO/TiC Composites: Optimisation, Mechanism and Toxicity Evaluation.

Environ Pollut

December 2024

Department of Nano-Chemical Engineering, Faculty of Advanced Technologies, Shiraz University, Shiraz, Iran; Drilling Nanofluid Lab, Shiraz University, Shiraz, Iran; Nanotechnology Research Institute, Shiraz University, Shiraz, Iran. Electronic address:

Photocatalytic technology has emerged as a promising solution to global water contamination, mainly through the effective degradation of persistent pharmaceutical pollutants. However, a few challenges still exist in enhancing degradation efficiency, reducing the toxicity of by-products, and ensuring cost-effective scalability. This study focuses on Tetracycline Hydrochloride (TCH) as an index antibiotic pollutant to evaluate the performance of a novel MXene-derived TiO-supported SiO₂/ TiC composite (SMXT) synthesised using ultrasonic and wet impregnation techniques.

View Article and Find Full Text PDF

Enhanced Leachate concentrate degradation Across Variable pH Ranges Using Cu@ATP-CTS Fenton-like Catalysts for H₂O₂ Activation.

Environ Res

December 2024

College of Environmental Science and Engineering, Beijing University of Technology, No. 100 Pingleyuan, Chaoyang District, Beijing 100124, China.

Landfill leachate nanofiltration concentrates (LLNC) contain complex organic pollutants that are difficult to treat. This study developed a copper-doped attapulgite-chitosan composite catalyst (Cu@ATP-CTS) for efficient LLNC degradation in a Fenton-like system. The incorporation of attapulgite extended the effective pH range of Fenton reactions from 2 to 8, overcoming traditional limitations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!