As a novel optical responsive material, photonic crystal is a promising sensing material in the recognition and detection of small molecules. Herein, a label-free composite sensor for aflatoxin B1 (AFB1) based on aptamer-functionalized photonic crystal arrays was successfully developed. Three-dimensional photonic crystals (3D PhCs) with a controllable number of layers were produced by a layer-by-layer (LBL) approach, and the introduction of gold nanoparticles (AuNPs) facilitated the immobilization procedure of recognition element aptamers, thus creating the AFB1 sensing detection system (AFB1-Apt 3D PhCs). The sensing system AFB1-Apt 3D PhCs exhibited a good linearity in the wide range of 1 pg mL-100 ng mL AFB1 with a limit of detection (LOD) of 0.28 pg mL. Furthermore AFB1-Apt 3D PhC was successfully applied in the determination of AFB1 in the millet and beer samples with good recovery. The sensing system performed ultrasensitive and label-free detection to the target, which could be further applied in the fields of food safety, clinical diagnosis or environmental monitoring, establishing an efficient and rapid universal detection platform.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2023.124638 | DOI Listing |
Nanoscale
January 2025
School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, P. R. China.
Photonic crystals (PC) play a key role in optical field modulation due to their unique photonic band gaps (PBGs). Anodic aluminum oxide (AAO) prepared by pulse anodization is a promising candidate for PC devices. In this research, an AAO-based PC with multi-band was fabricated on a single-slice & single-material film, which exhibits multi-band responses in the visible-to-near-infrared (vis-NIR) region.
View Article and Find Full Text PDFNature
January 2025
Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, CA, USA.
Microscopy and crystallography are two essential experimental methodologies for advancing modern science. They complement one another, with microscopy typically relying on lenses to image the local structures of samples, and crystallography using diffraction to determine the global atomic structure of crystals. Over the past two decades, computational microscopy, encompassing coherent diffractive imaging (CDI) and ptychography, has advanced rapidly, unifying microscopy and crystallography to overcome their limitations.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
College of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610225, China; Key Laboratory of Fundamental Chemistry of the State Ethnic Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610225, China. Electronic address:
Cholesterol (CHO) is an essential lipid in cell membranes and a precursor for vital living substances. Abnormal CHO levels can cause cardiovascular diseases. Therefore, simple and accurate monitoring of CHO levels is crucial for early diagnosis and effective management of cardiovascular diseases.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Wallenberg Wood Science Center, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden; Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden. Electronic address:
Hypothesis: Charge-stabilized colloidal cellulose nanocrystals (CNCs) can self-assemble into higher-ordered chiral nematic structures by varying the volume fraction. The assembly process exhibits distinct dynamics during the isotropic to liquid crystal phase transition, which can be elucidated using X-ray photon correlation spectroscopy (XPCS).
Experiments: Anionic CNCs were dispersed in propylene glycol (PG) and water spanning a range of volume fractions, encompassing several phase transitions.
Adv Sci (Weinh)
January 2025
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
Non-close-packed crystalline arrays of colloidal particles in an elastic matrix exhibit mechanochromism. However, small interparticle distances often limit the range of reversible color shifts and reduce reflectivity during a blueshift. A straightforward, reproducible strategy using matrix swelling to increase interparticle distance and improve mechanochromic performance is presented.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!