Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ursolic acid (UA), a pentacyclic triterpenoid, has gained attentions due to its various health-promoting benefits, but exhibits poor bioavailability. This could be enhanced by changing the food matrix of UA in which it is present. In this study, several UA systems were constructed to investigate the bioaccessibility and bioavailability of UA in combination with in vitro simulated digestion and Caco-2 cell models. The results showed that the bioaccessibility of UA was significantly improved after adding rapeseed oil. Caco-2 cell models showed that the UA-oil blend was more advantageous than UA emulsion in total absorption. The results indicate that the location of UA distribution in oil determines the ease of UA release into the mixed micellar phase. This paper brings a new research idea and basis for the design of improving the bioavailability of hydrophobic compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2023.136220 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!