Blacklegged ticks (Ixodes scapularis Say, Acari: Ixodidae) were collected from 432 locations across New York State (NYS) during the summer and autumn of 2015-2020 to determine the prevalence and geographic distribution of Borrelia miyamotoi (Spirochaetales: Spirochaetaceae) and coinfections with other tick-borne pathogens. A total of 48,386 I. scapularis were individually analyzed using a multiplex real-time polymerase chain reaction assay to simultaneously detect the presence of Bo. miyamotoi, Borrelia burgdorferi (Spirochaetales: Spirochaetaceae), Anaplasma phagocytophilum (Rickettsiales: Anaplasmataceae), and Babesia microti (Piroplasmida: Babesiidae). Overall prevalence of Bo. miyamotoi in host-seeking nymphs and adults varied geographically and temporally at the regional level. The rate of polymicrobial infection in Bo. miyamotoi-infected ticks varied by developmental stage, with certain co-infections occurring more frequently than expected by chance. Entomological risk of exposure to Bo. miyamotoi-infected nymphal and adult ticks (entomological risk index [ERI]) across NYS regions in relation to human cases of Bo. miyamotoi disease identified during the study period demonstrated spatial and temporal variation. The relationship between select environmental factors and Bo. miyamotoi ERI was explored using generalized linear mixed effects models, resulting in different factors significantly impacting ERI for nymphs and adult ticks. These results can inform estimates of Bo. miyamotoi disease risk and further our understanding of Bo. miyamotoi ecological dynamics in regions where this pathogen is known to occur.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10653143 | PMC |
http://dx.doi.org/10.1093/jme/tjad054 | DOI Listing |
Front Cell Infect Microbiol
December 2024
Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia.
Introduction: In Europe sensu lato (s.l.), the causative agent of Lyme borreliosis is transmitted by the castor bean tick, .
View Article and Find Full Text PDFPLoS One
December 2024
Faculty of Veterinary Medicine, Department of Veterinary Sciences, Institute for Infectious Diseases and Zoonoses, Chair of Bacteriology and Mycology, Ludwig-Maximilians-Universität Munich, Oberschleißheim, Bavaria, Germany.
Diagnosis of equine Lyme borreliosis (LB), an infection caused by members of the Borrelia burgdorferi sensu lato complex (Bbsl), is challenging due to the nonspecific clinical signs of the disease and due to the variety of non-standardized serological tests. Specific vaccine-induced antibodies against LB, providing an effective protection against the infection, complicate the issue further. The standard for the detection of specific antibodies against Bbsl is a two-tier test system based on an enzyme-linked immunosorbent assay (ELISA) or indirect fluorescent antibody test (IFA) for antibody screening combined with a qualitative, highly specific immunoassay (e.
View Article and Find Full Text PDFSci Prog
December 2024
Cardiology and Internal Medicine Department, Fundación Clínica Shaio, Bogotá, Colombia.
Eur J Med Res
December 2024
Department of Clinical Laboratory Medicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Jing'an District, Shanghai, 200443, China.
Background: Neurosyphilis (NS) is the most serious complication elicited by the invasion of Treponema pallidum (T. pallidum) into the central nervous system. Identifying the neuro-invasion of T.
View Article and Find Full Text PDFParasit Vectors
December 2024
Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Palackého tř. 1946/1, 61242, Brno, Czech Republic.
Background: Borrelia miyamotoi and Borrelia burgdorferi sensu lato (s.l.) are important zoonotic agents transmitted by Ixodes ricinus ticks, which are widely distributed across Central Europe.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!