As performance of van der Waals heterostructure devices is governed by the nanoscale thicknesses and homogeneity of their constituent mono- to few-layer flakes, accurate mapping of these properties with high lateral resolution becomes imperative. Spectroscopic ellipsometry is a promising optical technique for such atomically thin-film characterization due to its simplicity, noninvasive nature and high accuracy. However, the effective use of standard ellipsometry methods on exfoliated micron-scale flakes is inhibited by their tens-of-microns lateral resolution or slow data acquisition. In this work, we demonstrate a Fourier imaging spectroscopic micro-ellipsometry method with sub-5 μm lateral resolution and three orders-of-magnitude faster data acquisition than similar-resolution ellipsometers. Simultaneous recording of spectroscopic ellipsometry information at multiple angles results in a highly sensitive system, which is used for performing angstrom-level accurate and consistent thickness mapping on exfoliated mono-, bi- and trilayers of graphene, hexagonal boron nitride (hBN) and transition metal dichalcogenide (MoS, WS, MoSe, WSe) flakes. The system can successfully identify highly transparent monolayer hBN, a challenging proposition for other characterization tools. The optical microscope integrated ellipsometer can also map minute thickness variations over a micron-scale flake, revealing its lateral inhomogeneity. The prospect of adding standard optical elements to augment generic optical imaging and spectroscopy setups with accurate ellipsometric mapping capability presents potential opportunities for investigation of exfoliated 2D materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10210540 | PMC |
http://dx.doi.org/10.1021/acsnano.2c12773 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Faculty of Technical Chemistry, Institute of Chemical Technologies and Analytics, Technische Universität Wien, Vienna 1060, Austria.
Atomic force microscopy-infrared spectroscopy (AFM-IR) is a photothermal scanning probe technique that combines nanoscale spatial resolution with the chemical analysis capability of mid-infrared spectroscopy. Using this hybrid technique, chemical identification down to the single molecule level has been demonstrated. However, the mechanism at the heart of AFM-IR, the transduction of local photothermal heating to cantilever deflection, is still not fully understood.
View Article and Find Full Text PDFBiomimetics (Basel)
January 2025
Nuclear Cardiology Unit and CCT Service, Meir Medical Center, Kfar-Saba 95847, Israel.
Numerous efforts have been invested in previous algorithms to expose and enhance blood vessel (BV) visibility derived from clinical coronary angiography (CAG) procedures, such as noise reduction, segmentation, and background subtraction. Yet, the visibility of the BVs and their luminal content, particularly the small ones, is still limited. We propose a novel visibility enhancement algorithm, whose main body is inspired by a line completion mechanism of the visual system, i.
View Article and Find Full Text PDFJ Neuroinflammation
January 2025
Memory Unit, Neurology Department and Institut de Recerca Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Sant Quintí 77-79, 08041, Barcelona, Spain.
Background: Neuroinflammation plays a major role in amyotrophic lateral sclerosis (ALS), and cumulative evidence suggests that systemic inflammation and the infiltration of immune cells into the brain contribute to this process. However, no study has investigated the role of peripheral blood immune cells in ALS pathophysiology using single-cell RNA sequencing (scRNAseq).
Methods: We aimed to characterize immune cells from blood and identify ALS-related immune alterations at single-cell resolution.
Invest Ophthalmol Vis Sci
January 2025
Department of Ophthalmology, University of California, Los Angeles, California, United States.
Purpose: The optic nerve (ON) is mechanically perturbed by eye movements that shift cerebrospinal fluid (CSF) within its surrounding dural sheath. This study compared changes in ON length and CSF volume within the intraorbital ON sheath caused by eye movements in healthy subjects and patients with optic neuropathies.
Methods: Twenty-one healthy controls were compared with 11 patients having primary open angle glaucoma (POAG) at normal intraocular pressure (IOP), and 11 with chronic non-arteritic anterior ischemic optic neuropathy (NA-AION).
J Biomed Opt
January 2025
Tsinghua University, State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Beijing, China.
Significance: Optical coherence tomography (OCT) is widely utilized to investigate brain activities and disorders in anesthetized or restrained rodents. However, anesthesia can alter several physiological parameters, leading to findings that might not fully represent the true physiological state. To advance the understanding of brain function in awake and freely moving animals, the development of wearable OCT probes is crucial.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!