Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Photonic computing has attracted increasing interest for the acceleration of information processing in machine learning applications. The mode-competition dynamics of multimode semiconductor lasers are useful for solving the multi-armed bandit problem in reinforcement learning for computing applications. In this study, we numerically evaluate the chaotic mode-competition dynamics in a multimode semiconductor laser with optical feedback and injection. We observe the chaotic mode-competition dynamics among the longitudinal modes and control them by injecting an external optical signal into one of the longitudinal modes. We define the dominant mode as the mode with the maximum intensity; the dominant mode ratio for the injected mode increases as the optical injection strength increases. We deduce that the characteristics of the dominant mode ratio in terms of the optical injection strength are different among the modes owing to the different optical feedback phases. We propose a control technique for the characteristics of the dominant mode ratio by precisely tuning the initial optical frequency detuning between the optical injection signal and injected mode. We also evaluate the relationship between the region of the large dominant mode ratios and the injection locking range. The region with the large dominant mode ratios does not correspond to the injection-locking range. The control technique of chaotic mode-competition dynamics in multimode lasers is promising for applications in reinforcement learning and reservoir computing in photonic artificial intelligence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.481505 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!