Background: Human pluripotent stem cells (hPSCs) such as embryonic stem cells (ESCs) and induced pluripotent stem cells (PSCs) have the capacity of self-renewal and multilineage differentiation . Conventional hPSCs, which are in a primed state, can produce various types of differentiated cells. However, the variability in their degree of pluripotency and differentiation propensities, which is influenced by the inductive methods and culture conditions, limit their availability. Therefore, PSCs in a naïve state are a promising source of PSCs.

Methods: We recently developed a culture system for naïve hPSCs using an inhibitor of the NOTCH signaling pathway and a histone H3 methyltransferase disruptor. This culture system requires feeder cells for stably maintaining the naïve hPSCs. We aimed to develop a culture system for hPSCs that could maintain pluripotency under feeder-free conditions.

Results: We used two inhibitors to develop an alternative feeder-free culture system to obtain naïve hPSCs. The naïve cells underwent stable cellular proliferation and were positive for naïve stem cell markers; in addition, they could differentiate into the three germ layers. These feeder-free dome-shaped induced pluripotent stem cells (FFDS-iPSCs) have characteristics similar to that of naïve-like PSCs.

Conclusions: The naive hPSCs under feeder-free conditions could ensure supply of cells for various applications in regenerative medicine and disease modeling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10122725PMC
http://dx.doi.org/10.21037/sci-2022-043DOI Listing

Publication Analysis

Top Keywords

culture system
20
stem cells
20
pluripotent stem
16
naïve hpscs
12
cells
9
feeder-free culture
8
human pluripotent
8
induced pluripotent
8
system naïve
8
hpscs
7

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

Athira Pharma, Inc., Bothell, WA, USA.

Background: We have previously reported the neuroprotective effects of fosgonimeton in amyloid-β (Aβ)-driven preclinical models of Alzheimer's disease (AD). Fosgonimeton is an investigational small-molecule positive modulator of the neurotrophic hepatocyte growth factor (HGF) system, currently under investigation for mild-to-moderate AD (LIFT-AD; NCT04488419). Given the recent approvals of Aβ-targeting monoclonal antibodies (Aβ-mAbs) for the treatment of AD, and growing recognition that combination therapies may improve treatment outcomes, we sought to investigate the preclinical activity of fosgonimeton in the presence of Aβ-mAbs.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Vigil Neuroscience, Inc, Watertown, MA, USA.

Background: TREM2 is a lipid-sensing receptor expressed by microglial sub-populations within neuropathological microenvironments, whose downstream signaling promotes microglial survival, plasticity, and migration. Multiple loss-of-function variants strongly implicate TREM2 as a key regulator of Alzheimer's disease (AD) risk. Accordingly, TREM2 antibodies are currently in development to evaluate the therapeutic potential of TREM2 agonism in neurodegenerative diseases.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Beckman Research Institute of City of Hope, Duarte, CA, USA.

Background: Brain organoid models were generated from healthy control or Alzheimer's disease patient iPSCs to facilitate our understanding of AD pathogenesis.

Method: ApoE3 and ApoE4 iPSCs were developed into brain organoids using our recently developed brain organoid platform that allows prolonged culture of brain organoids. Human iPSCs were also differentiated into microglia, which were then co-cultured with brain organoids.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Vigil Neuroscience, Inc, Watertown, MA, USA.

Background: TREM2 is a lipid-sensing receptor expressed by microglial sub-populations within neuropathological microenvironments, whose downstream signaling promotes microglial survival, plasticity, and migration. Multiple loss-of-function variants strongly implicate TREM2 as a key regulator of Alzheimer's disease (AD) risk. Accordingly, TREM2 antibodies are currently in development to evaluate the therapeutic potential of TREM2 agonism in neurodegenerative diseases.

View Article and Find Full Text PDF

Dementia Care Research and Psychosocial Factors.

Alzheimers Dement

December 2024

USC Edward R. Roybal Institute on Aging, University of Southern California, Los Angeles, CA, USA.

Background: It is well documented that participating in physical activity can help dementia caregivers alleviate stress and enhance well-being. However, few studies have examined dementia caregivers' needs for exercise, and the feasibility of promoting their physical activity amidst heavy caregiving responsibilities. This study compared the participation of physical activity between dementia caregivers and non-caregivers, and examined effects of racial/ethnic identities and other sociodemographic factors on dementia caregivers' physical activity participation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!