Twenty years ago, this journal published a review entitled "Biofabrication with Chitosan" based on the observations that (i) chitosan could be electrodeposited using low voltage electrical inputs (typically less than 5 V) and (ii) the enzyme tyrosinase could be used to graft proteins (via accessible tyrosine residues) to chitosan. Here, we provide a progress report on the coupling of nic inputs with advanced logical methods for the of biopolymer-based hydrogel films. In many cases, the initial observations of chitosan's electrodeposition have been extended and generalized: mechanisms have been established for the electrodeposition of various other biological polymers (proteins and polysaccharides), and electrodeposition has been shown to allow the precise control of the hydrogel's emergent microstructure. In addition, the use of biotechnological methods to confer function has been extended from tyrosinase conjugation to the use of protein engineering to create genetically fused assembly tags (short sequences of accessible amino acid residues) that facilitate the attachment of function-conferring proteins to electrodeposited films using alternative enzymes (e.g., transglutaminase), metal chelation, and electrochemically induced oxidative mechanisms. Over these 20 years, the contributions from numerous groups have also identified exciting opportunities. First, electrochemistry provides unique capabilities to impose chemical and electrical cues that can induce assembly while controlling the emergent microstructure. Second, it is clear that the detailed mechanisms of biopolymer self-assembly (i.e., chitosan gel formation) are far more complex than anticipated, and this provides a rich opportunity both for fundamental inquiry and for the creation of high performance and sustainable material systems. Third, the mild conditions used for electrodeposition allow cells to be co-deposited for the fabrication of living materials. Finally, the applications have been expanded from biosensing and lab-on-a-chip systems to bioelectronic and medical materials. We suggest that electro-biofabrication is poised to emerge as an enabling additive manufacturing method especially suited for life science applications and to bridge communication between our biological and technological worlds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biomac.3c00132 | DOI Listing |
ACS Catal
January 2025
Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.
Automated, rapid electrocatalyst discovery techniques that comprehensively address the exploration of chemical spaces, characterization of catalyst robustness, reproducibility, and translation of results to (flow) electrolysis operation are needed. Responding to the growing interest in biomass valorization, we studied the glycerol electro-oxidation reaction (GEOR) on gold in alkaline media as a model reaction to demonstrate the efficacy of such methodology introduced here. Our platform combines individually addressable electrode arrays with HardPotato, a Python application programming interface for potentiostat control, to automate electrochemical experiments and data analysis operations.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Battery and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea.
Designing and constructing hierarchically structured materials with heterogeneous compositions is the key to developing an effective catalyst for overall water-splitting applications. Herein, we report the fabrication of hollow-structured selenium-doped nickel-cobalt hybrids on carbon paper as a self-supported electrode (denoted as Se-Ni|Co/CP, where Ni|Co hybrids consist of nickel-cobalt alloy-incorporated nickel-cobalt oxide). The procedure involves direct growth of zeolitic imidazolate framework-67 (ZIF-67) on bimetal-based nickel-cobalt hydroxide (NiCoOH) electrodeposited on CP, followed by selenous etching and pyrolysis to obtain the final Se-Ni|Co/CP electrocatalytic system.
View Article and Find Full Text PDFHeliyon
July 2024
Engineering Faculty, Department of Environmental and Chemical Engineering, Universidad Nacional de Colombia, Colombia.
In the present work, we report the synthesis and evaluation of a graphite-supported bismuth film working electrode (BiFE) in the simultaneous quantification of Hg(II) and Pb(II) at ppb levels. The BiFE was synthesized in-situ by electrodeposition in 1 M HNO as the supporting electrolyte at -0.5 V potential.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Department of Chemistry and Applied Biosciences, Laboratory of Inorganic Chemistry, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, Zürich, CH-8093, Switzerland; Laboratory of Radiochemistry, Centre for Nuclear Engineering and Sciences, Paul Scherrer Institute, Forschungsstrasse 111, Villigen PSI, CH-5232, Switzerland. Electronic address:
Background: The direct and accurate measurement of low-level γ-emitters in samples from nuclear facilities is a challenging task due to the presence of high activities of dominant radionuclides. In this case a complex chemical separation is required to remove interfering radionuclides prior to γ-spectrometric analysis. Several radionuclides such as, Ag, Sb, Sn and Te are of relevance for radioanalytical analysis in nuclear facilities.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Mechanical Engineering, Samsun University, 55420 Samsun, Turkey.
This study addresses the thermal management challenge in battery systems by enhancing phase change material composites with Ni-P and Ni-P-Cu coatings on phase change material/expanded graphite structures. Traditional phase change materials are limited by low thermal conductivity and mechanical stability, which restricts their effectiveness in high-demand applications. Unlike previous studies, this work integrates Ni-P and Ni-P-Cu coatings to significantly improve both the thermal conductivity and mechanical strength of phase change material/expanded graphite composites, filling a crucial gap in battery thermal management solutions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!