We used a range of computational techniques to assess the effect of selective C-H deuteration on the antagonist istradefylline affinity for the adenosine A receptor, which was discussed relative to its structural analogue caffeine, a well-known and likely the most widely used stimulant. The obtained results revealed that smaller caffeine shows high receptor flexibility and exchanges between two distinct poses, which agrees with crystallographic data. In contrast, the additional C8--styryl fragment in istradefylline locks the ligand within a uniform binding pose, while contributing to the affinity through the C-H···π and π···π contacts with surface residues, which, together with its much lower hydration prior to binding, enhances the affinity over caffeine. In addition, the aromatic C8-unit shows a higher deuteration sensitivity over the xanthine part, so when both of its methoxy groups are -deuterated, the affinity improvement is -0.4 kcal mol, which surpasses the overall affinity gain of -0.3 kcal mol in the perdeuterated -caffeine. Yet, the latter predicts around 1.7-fold potency increase, being relevant for its pharmaceutical implementations, and also those within the coffee and energy drink production industries. Still, the full potential of our strategy is achieved in polydeuterated -istradefylline, whose A affinity improves by -0.6 kcal mol, signifying a 2.8-fold potency increase that strongly promotes it as a potential synthetic target. This knowledge supports deuterium application in drug design, and while the literature already reports about over 20 deuterated drugs currently in the clinical development, it is easily foreseen that more examples will hit the market in the years to come. With this in mind, we propose that the devised computational methodology, involving the ONIOM division of the QM region for the ligand and the MM region for its environment, with an implicit quantization of nuclear motions relevant for the H/D exchange, allows fast and efficient estimates of the binding isotope effects in any biological system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jcim.3c00424 | DOI Listing |
Mol Divers
January 2025
Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia.
Dengue is one of the most prevalent viruses transmitted by the Aedes aegypti mosquitoes. Currently, no specific medication is available to treat dengue diseases. The NS2B-NS3 protease is vital during post-translational processing, which is a key target in this study.
View Article and Find Full Text PDFJ Enzyme Inhib Med Chem
December 2025
Department of Biology Education, Teachers College and Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu, Republic of Korea.
This study investigated the potential of the indirubin-3'-oxime (I3O) compound to mitigate temperature-induced male infertility in . Elevated temperatures significantly reduced egg-hatching rates, but I3O supplementation improved these rates, suggesting it can partially restore fertility under heat stress. Additionally, I3O was found to inhibit soluble epoxide hydrolase (sEH), an enzyme involved in the metabolism of epoxyeicosatrienoic acids, which are vital for reproductive health.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia.
Human rhinovirus C (HRV-C) is a significant contributor to respiratory tract infections in children and is implicated in asthma exacerbations across all age groups. Despite its impact, there is currently no licensed vaccine available for HRV-C. Here, we present a novel approach to address this gap by employing immunoinformatics techniques for the design of a multi-epitope-based vaccine against HRV-C.
View Article and Find Full Text PDFBMC Chem
January 2025
Gene Regulation Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
Trimethylamine-N-oxide (TMAO) is gut microbiota-derived metabolite, plays a critical role in human health and diseases such as metabolic, cardiovascular, colorectal cancer and, neurological disorders. Binding interactions between TMAO and serum albumins are crucial to understand the impact of TMAO on disease mechanisms. However, detailed insights into the interaction mechanisms, preferred binding locations, and conformational changes in BSA upon binding TMAO are still unclear.
View Article and Find Full Text PDFSci Rep
January 2025
Laboratory of Molecular Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, Cadi Ayyad University, BP 2390, 40000, Marrakech, Morocco.
TMPRSS4, a transmembrane serine protease type II, is associated with various pathological illnesses. It has been found to activate SARS-CoV-2, enhance viral infection of human small-intestinal enterocytes and is overexpressed in different types of cancers. Therefore, this study aims to disover potential TMPRSS4 inhibitors that have better binding affinity than the approved inhibitors: 2-hydroxydiarylamide and tyroserleutide.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!