Cancer is an umbrella term used to define various diseases with abnormal cell proliferation at the focal point. According to the WHO, cancer is the leading cause of death worldwide, with lung cancer being the second most common perpetrator after breast cancer. There are several proteins acting in harmony that lead to cancer. EGFR has been identified as one of the proteins that is linked to cell division, even when it is cancerous in nature. Cancer can be treated using therapeutic agents that target EGFR or their signaling networks. Available drugs that could inhibit EGFR have acquired resistance in most cases and multiple side effects on the human body. That is why phytochemicals are being studied for their role in this case. Around 8000 compounds were retrieved from our previously created phytochemdb database for their drug activity, and the 3D protein structure was collected from the protein data bank. The selected dataset of ligands was virtually screened through HTVS, SP, and XP to retain the top 4 hits. Molecular dynamics revealed the stability and flexibility of protein-(selected)ligand interactions. The non-bond interactions of each of the compounds with EGFR, such as Gossypetin interacting with active site MET769 and ASP831; Muxiangrine III interacting with MET769 and ASP831; Quercetagetin showing non-bonded interactions with GLU738, GLN767, and MET769 for >100% of the simulation timeframe These findings suggest further research into these compounds, which can yield a potential phytochemical drug against cancer.Communicated by Ramaswamy H. Sarma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/07391102.2023.2207656 | DOI Listing |
J Biomol Struct Dyn
March 2024
Department of Genetic Engineering and Biotechnology, Jagannath University, Dhaka, Bangladesh.
Cancer is an umbrella term used to define various diseases with abnormal cell proliferation at the focal point. According to the WHO, cancer is the leading cause of death worldwide, with lung cancer being the second most common perpetrator after breast cancer. There are several proteins acting in harmony that lead to cancer.
View Article and Find Full Text PDFChem Biodivers
June 2022
School of Biological & Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou, 310023, China.
A series of novel quinazolinone hydrazide derivatives were designed and synthesized as EGFR inhibitors. The results indicated that most of the aimed compounds had potential anti-tumor cell proliferation and EGFR inhibitory activities. In the comprehensive analysis of all the tested compounds, the target compound 9c showed the best anti-tumor cell proliferation activity, (IC =1.
View Article and Find Full Text PDFRSC Med Chem
March 2021
Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University Bangkok 10330 Thailand +662 2185418 +662 2185426.
The Janus kinase (JAK) and epidermal growth factor receptor (EGFR) have been considered as potential targets for cancer therapy due to their role in regulating proliferation and survival of cancer cells. In the present study, the aromatic alkyl-amino analogs of thiazole-based chalcone were selected to experimentally and theoretically investigate their inhibitory activity against JAK2 and EGFR proteins as well as their anti-cancer effects on human cancer cell lines expressing JAK2 (TF1 and HEL) and EGFR (A549 and A431). cytotoxicity screening results demonstrated that the HEL erythroleukemia cell line was susceptible to compounds and , whereas the A431 lung cancer cell line was vulnerable to compound .
View Article and Find Full Text PDFRes Pharm Sci
December 2018
Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran.
Quinazoline derivatives are potent inhibitors of human epidermal growth factor receptor (EGFR) as anticancer agents. In this study, the cytotoxic effects of a new series of synthesized quinazoline derivatives were evaluated using MTT assay against MCF-7 and HT-29 cell lines. Using molecular docking, the binding modes of all compounds were analyzed at the binding site of EGFR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!