Purpose: To investigate the feasibility and usefulness of 2-deoxy-2-(F)-fluoro-D-glucose positron emission tomography/computed tomography [(F)-FDG PET/CT] as a novel examination in the surveillance of abnormal myocardial energy metabolism and cardiac dysfunction after cardiopulmonary resuscitation (CPR).

Methods: Thirteen male Sprague-Dawley rats were randomly divided into a sham group (n = 4), CPR group (n = 4), and trimetazidine (TMZ) + CPR group (n = 5). The expression levels of the myocardial injury marker cardiac troponin I (CTNI) in serum were tested at 6 hours after CPR or TMZ + CPR. The ejection fraction and fraction shortening were evaluated by echocardiography. (F)-FDG PET/CT was used to measure the FDG uptake and the standardized uptake value (SUV) after CPR or TMZ + CPR for 6 hours. The intermediary carbohydrate metabolites of glycolysis including phosphoenolpyruvate, 3-phospho-D-glycerate, and the lactate/pyruvate ratio were detected through the multiple reaction monitoring approach. Simultaneously, the authors also tested the expression levels of the total adenosine triphosphate (ATP) and the key intermediate products of glucose ovidation as alpha ketoglutarate, citrate, and succinate in the myocardium.

Results: The authors found that the aerobic oxidation of glucose was reduced, and the anaerobic glycolysis was significantly enhanced in the myocardium in the early stage of CPR. Meanwhile, the myocardial injury marker CTNI was upregulated considerably ( = 0.014, = 0.021), and the left ventricular function of the animal heart also markedly deteriorated with the downregulation of ATP after CPR. In contrast, myocardial injury and cardiac function were greatly improved with the increase of ATP in the CPR + TMZ group. In addition, aerobic glucose oxidation metabolites were significantly increased ( < 0.05) and anaerobic glycolysis metabolites were significantly decreased ( < 0.05) after CPR in the myocardium. Surprisingly, (F)-FDG PET/CT could track the above changes by detecting the FDG uptake value and the SUV.

Conclusion: Glucose metabolism is an essential factor for myocardial self-repair after CPR. (F) FDG PET/CT, as a non-invasive technology, can monitor myocardial energy metabolism and cardiac function by tracking changes in glucose metabolism after CPR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10679618PMC
http://dx.doi.org/10.4274/dir.2023.221932DOI Listing

Publication Analysis

Top Keywords

myocardial energy
12
energy metabolism
12
metabolism cardiac
12
cpr
12
tmz cpr
12
myocardial injury
12
cpr tmz
12
positron emission
8
emission tomography/computed
8
tomography/computed tomography
8

Similar Publications

Background: Cardiogenic shock (CS) is a heterogeneous clinical syndrome, making it challenging to predict patient trajectory and response to treatment. This study aims to identify biological/molecular CS subphenotypes, evaluate their association with outcome, and explore their impact on heterogeneity of treatment effect (ShockCO-OP, NCT06376318).

Methods: We used unsupervised clustering to integrate plasma biomarker data from two prospective cohorts of CS patients: CardShock (N = 205 [2010-2012, NCT01374867]) and the French and European Outcome reGistry in Intensive Care Units (FROG-ICU) (N = 228 [2011-2013, NCT01367093]) to determine the optimal number of classes.

View Article and Find Full Text PDF

Physical exercise is a cornerstone for preventing diet-induced obesity, while it is unclear whether physical exercise could offset high-fat, high-calories diet (HFCD)-induced cardiac dysfunction. Here, mice were fed with HFCD and simultaneously subjected to physical exercise. As expected, physical exercise prevented HFCD-induced whole-body fat deposition.

View Article and Find Full Text PDF

Gualou-Xiebai-Banxia (GXB) decoction shows potential for treating myocardial ischemia (MI), although its underlying mechanism is not fully understood. In this study, a multimodal metabolomics approach, combining gas chromatography-mass spectrometry (GC-MS) and H-NMR, was employed to investigate the cardioprotective effects of GXB in a rat model of myocardial ischemia induced by ligation. ELISA assays and HE staining demonstrated that GXB effectively reduced myocardial injury, oxidative stress markers, and myocardial fibrosis.

View Article and Find Full Text PDF

Coenzyme Q10 (CoQ10) plays a crucial role in facilitating electron transport during oxidative phosphorylation, thus contributing to cellular energy production. Statin treatment causes a decrease in CoQ10 levels in muscle tissue as well as in serum, which may contribute to the musculoskeletal side effects. Therefore, we aimed to assess the effect of newly initiated statin treatment on serum CoQ10 levels after acute ST-elevation myocardial infarction (STEMI) and the correlation of CoQ10 levels with key biomarkers of subclinical or clinically overt myopathy.

View Article and Find Full Text PDF

Chronic exposure to high altitudes causes pathophysiological cardiac changes that are characterized by cardiac dysfunction, cardiac hypertrophy, and decreased energy reserves. However, finding specific pharmacological interventions for these pathophysiological changes is challenging. In this study, we identified tetramethylpyrazine (TMP) as a promising drug candidate for cardiac dysfunction caused by simulated high-altitude exposure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!